Cargando…
Continuous Monitoring of Pigs in Fattening Using a Multi-Sensor System: Behavior Patterns
SIMPLE SUMMARY: The livestock sector seeks technologies and procedures to collect and manage data and information about its facilities and animals being the basis of the so-called precision livestock. The installation of unusual devices in commercial facilities, as well as the use of electronic feed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022589/ https://www.ncbi.nlm.nih.gov/pubmed/31888006 http://dx.doi.org/10.3390/ani10010052 |
Sumario: | SIMPLE SUMMARY: The livestock sector seeks technologies and procedures to collect and manage data and information about its facilities and animals being the basis of the so-called precision livestock. The installation of unusual devices in commercial facilities, as well as the use of electronic feeding stations, allows observers to characterize the behavior pattern of each individual in order to improve farm management techniques and, therefore, its productivity. In this study, 30 Landrace pigs were monitored during the whole fattening period. Results from the study show that the ear skin temperatures of the animals can be used to distinguish animals with different thermal patterns. The parameters extracted from the feeding stations show consistent relationships between the parameters related to the frequency, size, and duration parameters, highlighting the differences in the feeding strategies. ABSTRACT: In this work, a complete fattening period (81 days) of a total of 30 Landrace pigs housed in two pens of a nucleus in Villatobas (Castilla-La Mancha, Spain) were supervised. The ear skin temperature of each animal was recorded every three minutes. The body weight, the date, the duration, and the amount of feed consumed per animal was monitored via an electronic feeding station. The objective was the identification of animals with different behaviors based on the integration of their thermal and intake patterns. The ear skin temperatures of the animals showed a negative relationship between the mean and the standard deviation (r = 0.83), distinguishing animals with different thermal patterns: individuals with high-temperature values show less thermal variability and vice versa. Feeding parameters showed differences in the feeding strategies of animals, identifying fast-eating animals with a high rate feed intake (60 g/min) and slow eaters (30 g/min). The correlation between the change in the rate of feed intake along with animal growth and feed efficiency reached a significant negative value (−0.57), indicating that animals that do not alter their rate of feed intake along breeding showed higher efficiencies. The difference in temperature of an animal with respect to the averaged group value has allowed us to identify animals with differentiated feeding patterns. |
---|