Cargando…
Monitoring the Interfacial Polymerization of Piperazine and Trimesoyl Chloride with Hydrophilic Interlayer or Macromolecular Additive by In Situ FT-IR Spectroscopy
The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize nanofiltration (NF) membranes. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022637/ https://www.ncbi.nlm.nih.gov/pubmed/31936126 http://dx.doi.org/10.3390/membranes10010012 |
Sumario: | The interfacial polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) has been extensively utilized to synthesize nanofiltration (NF) membranes. However, it is still a huge challenge to monitor the IP reaction, because of the fast reaction rate and the formed ultra-thin film. Herein, two effective strategies were applied to reduce the IP reaction rate: (1) the introduction of hydrophilic interlayers between the porous substrate and the formed polyamide layer, and (2) the addition of macromolecular additives in the aqueous solution of PIP. As a result, in situ Fourier transform infrared (FT-IR) spectroscopy was firstly used to monitor the IP reaction of PIP/TMC with hydrophilic interlayers or macromolecular additives in the aqueous solution of PIP. Moreover, the formed polyamide layer growth on the substrate was studied in a real-time manner. The in situ FT-IR experimental results confirmed that the IP reaction rates were effectively suppressed and that the formed polyamide thickness was reduced from 138 ± 24 nm to 46 ± 2 nm according to TEM observation. Furthermore, an optimized NF membrane with excellent performance was consequently obtained, which included boosted water permeation of about 141–238 (L/m(2)·h·MPa) and superior salt rejection of Na(2)SO(4) > 98.4%. |
---|