Cargando…

Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran

Persistent organic pollutants (POPs) are important environmental chemicals and continued study of their mechanism of action remains a high priority. POPs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and polychlorinated biphenyls (PCBs), are widespread...

Descripción completa

Detalles Bibliográficos
Autores principales: Nichols, Robert G., Zhang, Jingtao, Cai, Jingwei, Murray, Iain A., Koo, Imhoi, Smith, Philip B., Perdew, Gary H., Patterson, Andrew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022680/
https://www.ncbi.nlm.nih.gov/pubmed/31861317
http://dx.doi.org/10.3390/metabo10010001
Descripción
Sumario:Persistent organic pollutants (POPs) are important environmental chemicals and continued study of their mechanism of action remains a high priority. POPs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and polychlorinated biphenyls (PCBs), are widespread environmental contaminants that are agonists for the aryl hydrocarbon receptor (AHR). Activation of the AHR modulates the gut microbiome community structure and function, host immunity, and the host metabolome. In the current study, male C57BL6/J mice were exposed, via the diet, to 5 µg/kg body weight (BW) TCDF or 24 µg/kg BW of TCDF every day for 5 days. The functional and structural changes imparted by TCDF exposure to the gut microbiome and host metabolome were explored via 16S rRNA gene amplicon sequencing, metabolomics, and bacterial metatranscriptomics. Significant changes included increases in lipopolysaccharide (LPS) biosynthesis gene expression after exposure to 24 µg/kg BW of TCDF. Increases in LPS biosynthesis were confirmed with metabolomics and LPS assays using serum obtained from TCDF-treated mice. Significant increases in gene expression within aspartate and glutamate metabolism were noted after exposure to 24 µg/kg BW of TCDF. Together, these results suggest that after exposure to 24 µg/kg BW of TCDF, the gut microbiome increases the production of LPS and glutamate to promote localized gut inflammation, potentially using glutamate as a stress response.