Cargando…
Discovering Temporal Patterns in Longitudinal Nontargeted Metabolomics Data via Group and Nuclear Norm Regularized Multivariate Regression
Temporal associations in longitudinal nontargeted metabolomics data are generally ignored by common pattern recognition methods such as partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA). To discover temporal patterns in longitud...
Autores principales: | Lin, Zhaozhou, Zhang, Qiao, Dai, Shengyun, Gao, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7022931/ https://www.ncbi.nlm.nih.gov/pubmed/31941030 http://dx.doi.org/10.3390/metabo10010033 |
Ejemplares similares
-
L(2,1)-norm regularized multivariate regression model with applications to genomic prediction
por: Mbebi, Alain J, et al.
Publicado: (2021) -
Drug repositioning based on bounded nuclear norm regularization
por: Yang, Mengyun, et al.
Publicado: (2019) -
Nuclear Norm Regularized Deep Neural Network for EEG-Based Emotion Recognition
por: Liang, Shuang, et al.
Publicado: (2022) -
Gene regulatory network inference using mixed-norms regularized multivariate model with covariance selection
por: Mbebi, Alain J., et al.
Publicado: (2023) -
Nontargeted metabolomics reveals the potential mechanism underlying the association between birthweight and metabolic disturbances
por: Zhai, Xiao, et al.
Publicado: (2023)