Cargando…
Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges
Organic molecules and polymers have a broad range of applications in biomedical, chemical, and materials science fields. Traditional design approaches for organic molecules and polymers are mainly experimentally-driven, guided by experience, intuition, and conceptual insights. Though they have been...
Autores principales: | Chen, Guang, Shen, Zhiqiang, Iyer, Akshay, Ghumman, Umar Farooq, Tang, Shan, Bi, Jinbo, Chen, Wei, Li, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023065/ https://www.ncbi.nlm.nih.gov/pubmed/31936321 http://dx.doi.org/10.3390/polym12010163 |
Ejemplares similares
-
Machine Learning of Coarse-Grained Models for Organic
Molecules and Polymers: Progress, Opportunities, and Challenges
por: Ye, Huilin, et al.
Publicado: (2021) -
Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges
por: Farooq, Muhammad Shoaib, et al.
Publicado: (2023) -
Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities
por: Sampedro, Gabriel Avelino R., et al.
Publicado: (2022) -
Challenges and Opportunities for Small Molecule Aptamer Development
por: McKeague, Maureen, et al.
Publicado: (2012) -
Bilirubin as a Therapeutic Molecule: Challenges and Opportunities
por: Adin, Christopher A.
Publicado: (2021)