Cargando…
Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii
Cataloging an accurate functional gene set for the Symbiodiniaceae species is crucial for addressing biological questions of dinoflagellate symbiosis with corals and other invertebrates. To improve the gene models of Fugacium kawagutii, we conducted high-throughput chromosome conformation capture (H...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023079/ https://www.ncbi.nlm.nih.gov/pubmed/31940756 http://dx.doi.org/10.3390/microorganisms8010102 |
_version_ | 1783498166221406208 |
---|---|
author | Li, Tangcheng Yu, Liying Song, Bo Song, Yue Li, Ling Lin, Xin Lin, Senjie |
author_facet | Li, Tangcheng Yu, Liying Song, Bo Song, Yue Li, Ling Lin, Xin Lin, Senjie |
author_sort | Li, Tangcheng |
collection | PubMed |
description | Cataloging an accurate functional gene set for the Symbiodiniaceae species is crucial for addressing biological questions of dinoflagellate symbiosis with corals and other invertebrates. To improve the gene models of Fugacium kawagutii, we conducted high-throughput chromosome conformation capture (Hi-C) for the genome and Illumina combined with PacBio sequencing for the transcriptome to achieve a new genome assembly and gene prediction. A 0.937-Gbp assembly of F. kawagutii were obtained, with a N50 > 13 Mbp and the longest scaffold of 121 Mbp capped with telomere motif at both ends. Gene annotation produced 45,192 protein-coding genes, among which, 11,984 are new compared to previous versions of the genome. The newly identified genes are mainly enriched in 38 KEGG pathways including N-Glycan biosynthesis, mRNA surveillance pathway, cell cycle, autophagy, mitophagy, and fatty acid synthesis, which are important for symbiosis, nutrition, and reproduction. The newly identified genes also included those encoding O-methyltransferase (O-MT), 3-dehydroquinate synthase, homologous-pairing protein 2-like (HOP2) and meiosis protein 2 (MEI2), which function in mycosporine-like amino acids (MAAs) biosynthesis and sexual reproduction, respectively. The improved version of the gene set (Fugka_Geneset _V3) raised transcriptomic read mapping rate from 33% to 54% and BUSCO match from 29% to 55%. Further differential gene expression analysis yielded a set of stably expressed genes under variable trace metal conditions, of which 115 with annotated functions have recently been found to be stably expressed under three other conditions, thus further developing the “core gene set” of F. kawagutii. This improved genome will prove useful for future Symbiodiniaceae transcriptomic, gene structure, and gene expression studies, and the refined “core gene set” will be a valuable resource from which to develop reference genes for gene expression studies. |
format | Online Article Text |
id | pubmed-7023079 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70230792020-03-12 Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii Li, Tangcheng Yu, Liying Song, Bo Song, Yue Li, Ling Lin, Xin Lin, Senjie Microorganisms Article Cataloging an accurate functional gene set for the Symbiodiniaceae species is crucial for addressing biological questions of dinoflagellate symbiosis with corals and other invertebrates. To improve the gene models of Fugacium kawagutii, we conducted high-throughput chromosome conformation capture (Hi-C) for the genome and Illumina combined with PacBio sequencing for the transcriptome to achieve a new genome assembly and gene prediction. A 0.937-Gbp assembly of F. kawagutii were obtained, with a N50 > 13 Mbp and the longest scaffold of 121 Mbp capped with telomere motif at both ends. Gene annotation produced 45,192 protein-coding genes, among which, 11,984 are new compared to previous versions of the genome. The newly identified genes are mainly enriched in 38 KEGG pathways including N-Glycan biosynthesis, mRNA surveillance pathway, cell cycle, autophagy, mitophagy, and fatty acid synthesis, which are important for symbiosis, nutrition, and reproduction. The newly identified genes also included those encoding O-methyltransferase (O-MT), 3-dehydroquinate synthase, homologous-pairing protein 2-like (HOP2) and meiosis protein 2 (MEI2), which function in mycosporine-like amino acids (MAAs) biosynthesis and sexual reproduction, respectively. The improved version of the gene set (Fugka_Geneset _V3) raised transcriptomic read mapping rate from 33% to 54% and BUSCO match from 29% to 55%. Further differential gene expression analysis yielded a set of stably expressed genes under variable trace metal conditions, of which 115 with annotated functions have recently been found to be stably expressed under three other conditions, thus further developing the “core gene set” of F. kawagutii. This improved genome will prove useful for future Symbiodiniaceae transcriptomic, gene structure, and gene expression studies, and the refined “core gene set” will be a valuable resource from which to develop reference genes for gene expression studies. MDPI 2020-01-11 /pmc/articles/PMC7023079/ /pubmed/31940756 http://dx.doi.org/10.3390/microorganisms8010102 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Tangcheng Yu, Liying Song, Bo Song, Yue Li, Ling Lin, Xin Lin, Senjie Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title | Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title_full | Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title_fullStr | Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title_full_unstemmed | Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title_short | Genome Improvement and Core Gene Set Refinement of Fugacium kawagutii |
title_sort | genome improvement and core gene set refinement of fugacium kawagutii |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023079/ https://www.ncbi.nlm.nih.gov/pubmed/31940756 http://dx.doi.org/10.3390/microorganisms8010102 |
work_keys_str_mv | AT litangcheng genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT yuliying genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT songbo genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT songyue genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT liling genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT linxin genomeimprovementandcoregenesetrefinementoffugaciumkawagutii AT linsenjie genomeimprovementandcoregenesetrefinementoffugaciumkawagutii |