Cargando…

Vegetation Pattern Modulates Ground Arthropod Diversity in Semi-Arid Mediterranean Steppes

The ecological functioning of dryland ecosystems is closely related to the spatial pattern of the vegetation, which is typically structured in patches. Ground arthropods mediate key soil functions and ecological processes, yet little is known about the influence of dryland vegetation pattern on thei...

Descripción completa

Detalles Bibliográficos
Autores principales: Meloni, Fernando, F. Civieta, Berta, A. Zaragoza, Juan, Lourdes Moraza, María, Bautista, Susana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023303/
https://www.ncbi.nlm.nih.gov/pubmed/31963626
http://dx.doi.org/10.3390/insects11010059
Descripción
Sumario:The ecological functioning of dryland ecosystems is closely related to the spatial pattern of the vegetation, which is typically structured in patches. Ground arthropods mediate key soil functions and ecological processes, yet little is known about the influence of dryland vegetation pattern on their abundance and diversity. Here, we investigate how patch size and cover, and distance between patches relate to the abundance and diversity of meso-and microarthropods in semi-arid steppes. We found that species richness and abundance of ground arthropods exponentially increase with vegetation cover, patch size, and patch closeness. The communities under vegetation patches mainly respond to patch size, while the communities in the bare-soil interpatches are mostly controlled by the average distance between patches, independently of the concurrent changes in vegetation cover. Large patches seem to play a critical role as reserve and source of ground arthropod diversity. Our results suggest that decreasing vegetation cover and/or changes in vegetation pattern towards small and over-dispersed vegetation patches can fast lead to a significant loss of ground arthropods diversity in drylands.