Cargando…
Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition
Two-dimensional (2D) layered semiconductor materials, such as transition metal dichalcogenides (TMDCs), have attracted considerable interests because of their intriguing optical and electronic properties. Controlled growth of TMDC crystals with large grain size and atomically smooth surface is indee...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023349/ https://www.ncbi.nlm.nih.gov/pubmed/31906071 http://dx.doi.org/10.3390/nano10010075 |
_version_ | 1783498228876967936 |
---|---|
author | Wang, Siyuan Wang, Guang Yang, Xi Yang, Hang Zhu, Mengjian Zhang, Sen Peng, Gang Li, Zheng |
author_facet | Wang, Siyuan Wang, Guang Yang, Xi Yang, Hang Zhu, Mengjian Zhang, Sen Peng, Gang Li, Zheng |
author_sort | Wang, Siyuan |
collection | PubMed |
description | Two-dimensional (2D) layered semiconductor materials, such as transition metal dichalcogenides (TMDCs), have attracted considerable interests because of their intriguing optical and electronic properties. Controlled growth of TMDC crystals with large grain size and atomically smooth surface is indeed desirable but remains challenging due to excessive nucleation. Here, we have synthesized high-quality monolayer, bilayer MoSe(2) triangular crystals, and continuous thin films with controlled nucleation density via reverse-flow chemical vapor deposition (CVD). High crystallinity and good saturated absorption performance of MoSe(2) have been systematically investigated and carefully demonstrated. Optimized nucleation and uniform morphology could be achieved via fine-tuning reverse-flow switching time, growth time and temperature, with corresponding growth kinetics proposed. Our work opens up a new approach for controllable synthesis of monolayer TMDC crystals with high yield and reliability, which promote surface/interface engineering of 2D semiconductors towards van der Waals heterostructure device applications. |
format | Online Article Text |
id | pubmed-7023349 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70233492020-03-12 Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition Wang, Siyuan Wang, Guang Yang, Xi Yang, Hang Zhu, Mengjian Zhang, Sen Peng, Gang Li, Zheng Nanomaterials (Basel) Letter Two-dimensional (2D) layered semiconductor materials, such as transition metal dichalcogenides (TMDCs), have attracted considerable interests because of their intriguing optical and electronic properties. Controlled growth of TMDC crystals with large grain size and atomically smooth surface is indeed desirable but remains challenging due to excessive nucleation. Here, we have synthesized high-quality monolayer, bilayer MoSe(2) triangular crystals, and continuous thin films with controlled nucleation density via reverse-flow chemical vapor deposition (CVD). High crystallinity and good saturated absorption performance of MoSe(2) have been systematically investigated and carefully demonstrated. Optimized nucleation and uniform morphology could be achieved via fine-tuning reverse-flow switching time, growth time and temperature, with corresponding growth kinetics proposed. Our work opens up a new approach for controllable synthesis of monolayer TMDC crystals with high yield and reliability, which promote surface/interface engineering of 2D semiconductors towards van der Waals heterostructure device applications. MDPI 2019-12-31 /pmc/articles/PMC7023349/ /pubmed/31906071 http://dx.doi.org/10.3390/nano10010075 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Letter Wang, Siyuan Wang, Guang Yang, Xi Yang, Hang Zhu, Mengjian Zhang, Sen Peng, Gang Li, Zheng Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title | Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title_full | Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title_fullStr | Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title_full_unstemmed | Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title_short | Synthesis of Monolayer MoSe(2) with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition |
title_sort | synthesis of monolayer mose(2) with controlled nucleation via reverse-flow chemical vapor deposition |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023349/ https://www.ncbi.nlm.nih.gov/pubmed/31906071 http://dx.doi.org/10.3390/nano10010075 |
work_keys_str_mv | AT wangsiyuan synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT wangguang synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT yangxi synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT yanghang synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT zhumengjian synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT zhangsen synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT penggang synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition AT lizheng synthesisofmonolayermose2withcontrollednucleationviareverseflowchemicalvapordeposition |