Cargando…
Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and reg...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023416/ https://www.ncbi.nlm.nih.gov/pubmed/31947548 http://dx.doi.org/10.3390/nano10010146 |
_version_ | 1783498244727242752 |
---|---|
author | Levingstone, Tanya J. Herbaj, Simona Redmond, John McCarthy, Helen O. Dunne, Nicholas J. |
author_facet | Levingstone, Tanya J. Herbaj, Simona Redmond, John McCarthy, Helen O. Dunne, Nicholas J. |
author_sort | Levingstone, Tanya J. |
collection | PubMed |
description | Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration. |
format | Online Article Text |
id | pubmed-7023416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70234162020-03-12 Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration Levingstone, Tanya J. Herbaj, Simona Redmond, John McCarthy, Helen O. Dunne, Nicholas J. Nanomaterials (Basel) Review Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration. MDPI 2020-01-14 /pmc/articles/PMC7023416/ /pubmed/31947548 http://dx.doi.org/10.3390/nano10010146 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Levingstone, Tanya J. Herbaj, Simona Redmond, John McCarthy, Helen O. Dunne, Nicholas J. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title | Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title_full | Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title_fullStr | Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title_full_unstemmed | Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title_short | Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration |
title_sort | calcium phosphate nanoparticles-based systems for rnai delivery: applications in bone tissue regeneration |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023416/ https://www.ncbi.nlm.nih.gov/pubmed/31947548 http://dx.doi.org/10.3390/nano10010146 |
work_keys_str_mv | AT levingstonetanyaj calciumphosphatenanoparticlesbasedsystemsforrnaideliveryapplicationsinbonetissueregeneration AT herbajsimona calciumphosphatenanoparticlesbasedsystemsforrnaideliveryapplicationsinbonetissueregeneration AT redmondjohn calciumphosphatenanoparticlesbasedsystemsforrnaideliveryapplicationsinbonetissueregeneration AT mccarthyheleno calciumphosphatenanoparticlesbasedsystemsforrnaideliveryapplicationsinbonetissueregeneration AT dunnenicholasj calciumphosphatenanoparticlesbasedsystemsforrnaideliveryapplicationsinbonetissueregeneration |