Cargando…
Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites
Nanocomposite dielectrics show a great potential application in high voltage direct current cables for their obvious improvements in electrical properties. In the present manuscript, nanocomposite composed of low-density polyethylene and nanoscale polystyrene particles is studied by using low-densit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023418/ https://www.ncbi.nlm.nih.gov/pubmed/31948084 http://dx.doi.org/10.3390/polym12010124 |
_version_ | 1783498245211684864 |
---|---|
author | Song, Shuwei Zhao, Hong Yao, Zhanhai Yan, Zhiyu Yang, Jiaming Wang, Xuan Zhao, Xindong |
author_facet | Song, Shuwei Zhao, Hong Yao, Zhanhai Yan, Zhiyu Yang, Jiaming Wang, Xuan Zhao, Xindong |
author_sort | Song, Shuwei |
collection | PubMed |
description | Nanocomposite dielectrics show a great potential application in high voltage direct current cables for their obvious improvements in electrical properties. In the present manuscript, nanocomposite composed of low-density polyethylene and nanoscale polystyrene particles is studied by using low-density polyethylene grafted with polystyrene molecule. Fourier-transform infrared spectra reveal successful grafting of the polystyrene molecule onto the low-density polyethylene chain and the scanning electron microscope image shows the homogeneously dispersed nanoscale polystyrene particles. The presence of the polystyrene nanoparticles obviously improves the dielectric properties, such as the direct current breakdown strength and space charge inhibition. The conductivity and thermally stimulated current characteristics imply the deep traps in the composite increase obviously. Density functional theory calculation reveals that the grafted polystyrene can accommodate both shallow and deep electron carriers, and the depth of the hole traps are as deep as 2.07 eV. |
format | Online Article Text |
id | pubmed-7023418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70234182020-03-12 Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites Song, Shuwei Zhao, Hong Yao, Zhanhai Yan, Zhiyu Yang, Jiaming Wang, Xuan Zhao, Xindong Polymers (Basel) Article Nanocomposite dielectrics show a great potential application in high voltage direct current cables for their obvious improvements in electrical properties. In the present manuscript, nanocomposite composed of low-density polyethylene and nanoscale polystyrene particles is studied by using low-density polyethylene grafted with polystyrene molecule. Fourier-transform infrared spectra reveal successful grafting of the polystyrene molecule onto the low-density polyethylene chain and the scanning electron microscope image shows the homogeneously dispersed nanoscale polystyrene particles. The presence of the polystyrene nanoparticles obviously improves the dielectric properties, such as the direct current breakdown strength and space charge inhibition. The conductivity and thermally stimulated current characteristics imply the deep traps in the composite increase obviously. Density functional theory calculation reveals that the grafted polystyrene can accommodate both shallow and deep electron carriers, and the depth of the hole traps are as deep as 2.07 eV. MDPI 2020-01-05 /pmc/articles/PMC7023418/ /pubmed/31948084 http://dx.doi.org/10.3390/polym12010124 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Shuwei Zhao, Hong Yao, Zhanhai Yan, Zhiyu Yang, Jiaming Wang, Xuan Zhao, Xindong Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title | Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title_full | Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title_fullStr | Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title_full_unstemmed | Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title_short | Enhanced Electrical Properties of Polyethylene-Graft-Polystyrene/LDPE Composites |
title_sort | enhanced electrical properties of polyethylene-graft-polystyrene/ldpe composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023418/ https://www.ncbi.nlm.nih.gov/pubmed/31948084 http://dx.doi.org/10.3390/polym12010124 |
work_keys_str_mv | AT songshuwei enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT zhaohong enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT yaozhanhai enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT yanzhiyu enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT yangjiaming enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT wangxuan enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites AT zhaoxindong enhancedelectricalpropertiesofpolyethylenegraftpolystyreneldpecomposites |