Cargando…
Modeling Pinot Noir Aroma Profiles Based on Weather and Water Management Information Using Machine Learning Algorithms: A Vertical Vintage Analysis Using Artificial Intelligence
Wine aroma profiles are determinant for the specific style and quality characteristics of final wines. These are dependent on the seasonality, mainly weather conditions, such as solar exposure and temperatures and water management strategies from veraison to harvest. This paper presents machine lear...
Autores principales: | Fuentes, Sigfredo, Tongson, Eden, Torrico, Damir D., Gonzalez Viejo, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023421/ https://www.ncbi.nlm.nih.gov/pubmed/31905992 http://dx.doi.org/10.3390/foods9010033 |
Ejemplares similares
-
Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data
por: Fuentes, Sigfredo, et al.
Publicado: (2020) -
Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity
por: Gonzalez Viejo, Claudia, et al.
Publicado: (2021) -
Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry
por: Steenwerth, Kerri L., et al.
Publicado: (2021) -
Pinot blanc and Pinot gris arose as independent somatic mutations of Pinot noir
por: Vezzulli, Silvia, et al.
Publicado: (2012) -
Editorial: Special Issue “Implementation of Sensors and Artificial Intelligence for Environmental Hazards Assessment in Urban, Agriculture and Forestry Systems”
por: Fuentes, Sigfredo, et al.
Publicado: (2021)