Cargando…
Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis
Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat sho...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023422/ https://www.ncbi.nlm.nih.gov/pubmed/31952216 http://dx.doi.org/10.3390/microorganisms8010117 |
_version_ | 1783498246184763392 |
---|---|
author | Oliver, Cristian Sánchez, Patricio Valenzuela, Karla Hernández, Mauricio Pontigo, Juan Pablo Rauch, Maria C. Garduño, Rafael A. Avendaño-Herrera, Ruben Yáñez, Alejandro J. |
author_facet | Oliver, Cristian Sánchez, Patricio Valenzuela, Karla Hernández, Mauricio Pontigo, Juan Pablo Rauch, Maria C. Garduño, Rafael A. Avendaño-Herrera, Ruben Yáñez, Alejandro J. |
author_sort | Oliver, Cristian |
collection | PubMed |
description | Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the P. salmonis Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix. This study tests the hypothesis that P. salmonis Hsp60 could be located on the bacterial surface. Immunogold electron microscopy and proteomic analyses suggested that although P. salmonis Hsp60 was predominantly associated with the bacterial cell cytoplasm, Hsp60-positive spots also exist on the bacterial cell envelope. IgY antibodies against P. salmonis Hsp60 protected SHK-1 cells against infection. Several bioinformatics approaches were used to assess Hsp60 translocation by the T4SS, T3SS, and T6SS, with negative results. These data support the hypothesis that small amounts of Hsp60 must reach the bacterial cell surface in a manner probably not mediated by currently characterized secretion systems, and that they remain biologically active during P. salmonis infection, possibly mediating adherence and (or) invasion. |
format | Online Article Text |
id | pubmed-7023422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70234222020-03-12 Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis Oliver, Cristian Sánchez, Patricio Valenzuela, Karla Hernández, Mauricio Pontigo, Juan Pablo Rauch, Maria C. Garduño, Rafael A. Avendaño-Herrera, Ruben Yáñez, Alejandro J. Microorganisms Article Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the P. salmonis Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix. This study tests the hypothesis that P. salmonis Hsp60 could be located on the bacterial surface. Immunogold electron microscopy and proteomic analyses suggested that although P. salmonis Hsp60 was predominantly associated with the bacterial cell cytoplasm, Hsp60-positive spots also exist on the bacterial cell envelope. IgY antibodies against P. salmonis Hsp60 protected SHK-1 cells against infection. Several bioinformatics approaches were used to assess Hsp60 translocation by the T4SS, T3SS, and T6SS, with negative results. These data support the hypothesis that small amounts of Hsp60 must reach the bacterial cell surface in a manner probably not mediated by currently characterized secretion systems, and that they remain biologically active during P. salmonis infection, possibly mediating adherence and (or) invasion. MDPI 2020-01-15 /pmc/articles/PMC7023422/ /pubmed/31952216 http://dx.doi.org/10.3390/microorganisms8010117 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oliver, Cristian Sánchez, Patricio Valenzuela, Karla Hernández, Mauricio Pontigo, Juan Pablo Rauch, Maria C. Garduño, Rafael A. Avendaño-Herrera, Ruben Yáñez, Alejandro J. Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title | Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title_full | Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title_fullStr | Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title_full_unstemmed | Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title_short | Subcellular Location of Piscirickettsia salmonis Heat Shock Protein 60 (Hsp60) Chaperone by Using Immunogold Labeling and Proteomic Analysis |
title_sort | subcellular location of piscirickettsia salmonis heat shock protein 60 (hsp60) chaperone by using immunogold labeling and proteomic analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023422/ https://www.ncbi.nlm.nih.gov/pubmed/31952216 http://dx.doi.org/10.3390/microorganisms8010117 |
work_keys_str_mv | AT olivercristian subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT sanchezpatricio subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT valenzuelakarla subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT hernandezmauricio subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT pontigojuanpablo subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT rauchmariac subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT gardunorafaela subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT avendanoherreraruben subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis AT yanezalejandroj subcellularlocationofpiscirickettsiasalmonisheatshockprotein60hsp60chaperonebyusingimmunogoldlabelingandproteomicanalysis |