Cargando…
PA6 and Halloysite Nanotubes Composites with Improved Hydrothermal Ageing Resistance: Role of Filler Physicochemical Properties, Functionalization and Dispersion Technique
Polyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become pri...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023541/ https://www.ncbi.nlm.nih.gov/pubmed/31952200 http://dx.doi.org/10.3390/polym12010211 |
Sumario: | Polyamide 6 (PA6) suffers from fast degradation in humid conditions due to hydrolysis of amide bonds, which limits its durability. The addition of nanotubular fillers represents a viable strategy for overcoming this issue, although the additive/polymer interface at high filler content can become privileged site for moisture accumulation. As a cost-effective and versatile material, halloysite nanotubes (HNT) were investigated to prepare PA6 nanocomposites with very low loadings (1–45% w/w). The roles of the physicochemical properties of two differently sourced HNT, of filler functionalization with (3-aminopropyl)triethoxysilane and of dispersion techniques (in situ polymerization vs. melt blending) were investigated. The aspect ratio (5 vs. 15) and surface charge (−31 vs. −59 mV) of the two HNT proved crucial in determining their distribution within the polymer matrix. In situ polymerization of functionalized HNT leads to enclosed and well-penetrated filler within the polymer matrix. PA6 nanocomposites crystal growth and nucleation type were studied according to Avrami theory, as well as the formation of different crystalline structures (α and γ forms). After 1680 h of ageing, functionalized HNT reduced the diffusion of water into polymer, lowering water uptake after 600 h up to 90%, increasing the materials durability also regarding molecular weights and rheological behavior. |
---|