Cargando…
Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice
BACKGROUND: Rice ratooning has traditionally been an important component of the rice cropping system in China. However, compared with the rice of the first harvest, few studies on factors effecting ratoon rice yield have been conducted. Because ratoon rice is a one-season rice cultivated using axill...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023735/ https://www.ncbi.nlm.nih.gov/pubmed/32059642 http://dx.doi.org/10.1186/s12870-020-2277-x |
_version_ | 1783498315432722432 |
---|---|
author | Xu, Huibin Lian, Ling Wang, Fuxiang Jiang, Jiahuan Lin, Qiang Xie, Hongguang Luo, Xi Zhu, Yongsheng Zhuo, Chuanying Wang, Jinlan Xie, Huaan Jiang, Zhaowei Zhang, Jianfu |
author_facet | Xu, Huibin Lian, Ling Wang, Fuxiang Jiang, Jiahuan Lin, Qiang Xie, Hongguang Luo, Xi Zhu, Yongsheng Zhuo, Chuanying Wang, Jinlan Xie, Huaan Jiang, Zhaowei Zhang, Jianfu |
author_sort | Xu, Huibin |
collection | PubMed |
description | BACKGROUND: Rice ratooning has traditionally been an important component of the rice cropping system in China. However, compared with the rice of the first harvest, few studies on factors effecting ratoon rice yield have been conducted. Because ratoon rice is a one-season rice cultivated using axillary buds that germinate on rice stakes and generate panicles after the first crop’s harvest, its production is mainly affected by the growth of axillary buds. The objectives of this study were to evaluate the sprouting mechanism of axillary buds to improve the ratoon rice yield. RESULTS: First, we observed the differentiation and growth dynamics of axillary buds at different nodes of Shanyou 63, and found that they differentiated from bottom to top before the heading of the mother stem, and that they developed very slowly. After heading they differentiated from top to bottom, and the ones on the top, especially the top 2nd node, developed much faster than those at the other nodes. The average length and dry weight of the axillary buds were significantly greater than those at other nodes by the yellow ripe stage, and they differentiated into pistils and stamens by 6 d after the yellow ripe stage. The morphology of vegetative organs from regenerated tillers of Shanyou 63 also suggested the superior growth of the upper buds, which was regulated by hormones, in ratoon rice. Furthermore, a comprehensive proteome map of the rice axillary buds at the top 2nd node before and after the yellow ripe stage was established, and some proteins involved in steroid biosynthesis were significantly increased. Of these, four took part in brassinosteroid (BR) biosynthesis. Thus, BR signaling may play a role in the germination of axillary buds of ratoon rice. CONCLUSIONS: The data provide insights into the molecular mechanisms underlying BR signaling, and may allow researchers to explore further the biological functions of endogenous BRs in the germination of axillary buds of ratoon rice. |
format | Online Article Text |
id | pubmed-7023735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-70237352020-02-20 Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice Xu, Huibin Lian, Ling Wang, Fuxiang Jiang, Jiahuan Lin, Qiang Xie, Hongguang Luo, Xi Zhu, Yongsheng Zhuo, Chuanying Wang, Jinlan Xie, Huaan Jiang, Zhaowei Zhang, Jianfu BMC Plant Biol Research Article BACKGROUND: Rice ratooning has traditionally been an important component of the rice cropping system in China. However, compared with the rice of the first harvest, few studies on factors effecting ratoon rice yield have been conducted. Because ratoon rice is a one-season rice cultivated using axillary buds that germinate on rice stakes and generate panicles after the first crop’s harvest, its production is mainly affected by the growth of axillary buds. The objectives of this study were to evaluate the sprouting mechanism of axillary buds to improve the ratoon rice yield. RESULTS: First, we observed the differentiation and growth dynamics of axillary buds at different nodes of Shanyou 63, and found that they differentiated from bottom to top before the heading of the mother stem, and that they developed very slowly. After heading they differentiated from top to bottom, and the ones on the top, especially the top 2nd node, developed much faster than those at the other nodes. The average length and dry weight of the axillary buds were significantly greater than those at other nodes by the yellow ripe stage, and they differentiated into pistils and stamens by 6 d after the yellow ripe stage. The morphology of vegetative organs from regenerated tillers of Shanyou 63 also suggested the superior growth of the upper buds, which was regulated by hormones, in ratoon rice. Furthermore, a comprehensive proteome map of the rice axillary buds at the top 2nd node before and after the yellow ripe stage was established, and some proteins involved in steroid biosynthesis were significantly increased. Of these, four took part in brassinosteroid (BR) biosynthesis. Thus, BR signaling may play a role in the germination of axillary buds of ratoon rice. CONCLUSIONS: The data provide insights into the molecular mechanisms underlying BR signaling, and may allow researchers to explore further the biological functions of endogenous BRs in the germination of axillary buds of ratoon rice. BioMed Central 2020-02-14 /pmc/articles/PMC7023735/ /pubmed/32059642 http://dx.doi.org/10.1186/s12870-020-2277-x Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Xu, Huibin Lian, Ling Wang, Fuxiang Jiang, Jiahuan Lin, Qiang Xie, Hongguang Luo, Xi Zhu, Yongsheng Zhuo, Chuanying Wang, Jinlan Xie, Huaan Jiang, Zhaowei Zhang, Jianfu Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title | Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title_full | Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title_fullStr | Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title_full_unstemmed | Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title_short | Brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
title_sort | brassinosteroid signaling may regulate the germination of axillary buds in ratoon rice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023735/ https://www.ncbi.nlm.nih.gov/pubmed/32059642 http://dx.doi.org/10.1186/s12870-020-2277-x |
work_keys_str_mv | AT xuhuibin brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT lianling brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT wangfuxiang brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT jiangjiahuan brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT linqiang brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT xiehongguang brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT luoxi brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT zhuyongsheng brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT zhuochuanying brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT wangjinlan brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT xiehuaan brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT jiangzhaowei brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice AT zhangjianfu brassinosteroidsignalingmayregulatethegerminationofaxillarybudsinratoonrice |