Cargando…

Effects of Oil Droplet Size and Interfacial Protein Film on the Properties of Fish Myofibrillar Protein–Oil Composite Gels

The effects of oil droplet size and the formation of an interfacial protein film (IPF) on silver carp myofibrillar protein (MP)–oil composite gels were studied. MP- or Tween 80-stabilized camellia seed oil emulsions with different droplet sizes were prepared and added to MPs to prepare composite gel...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xia, Chen, Hong, Zhang, Qi, Lyu, Fei, Ding, Yuting, Zhou, Xuxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024232/
https://www.ncbi.nlm.nih.gov/pubmed/31936862
http://dx.doi.org/10.3390/molecules25020289
Descripción
Sumario:The effects of oil droplet size and the formation of an interfacial protein film (IPF) on silver carp myofibrillar protein (MP)–oil composite gels were studied. MP- or Tween 80-stabilized camellia seed oil emulsions with different droplet sizes were prepared and added to MPs to prepare composite gels. The oil droplet size of the Tween 80-stabilized emulsion was significantly smaller (p < 0.05) than that of the MP-stabilized emulsion with the same homogenization speed. However, polymerization of Tween 80-stabilized emulsions during the preparation of the composite gels was found. Composite gels with the MP-stabilized emulsions of a small droplet size showed significantly improved water-holding capacity, texture, and dynamic rheological properties. Interfacial shear rheology studies revealed that the storage modulus (G’) of the MP-stabilized emulsion composite gels was higher than that of the Tween 80-stabilized gels, and the tan δ of the MP-stabilized oil emulsion composite gels was smaller than that of the Tween 80-stabilized gels, indicating that stronger elastic gel structures were formed. These results suggested that the IPF formed in the MP-stabilized emulsion helped stabilize the oil droplets embedded in the protein gel network, and the smaller the droplet size, the more stable the composite gel. This work provides a better understanding of how oil emulsions interact with protein and affect the properties of MP–oil composite gels.