Cargando…

Vaginal Polyelectrolyte Layer-by-Layer Films Based on Chitosan Derivatives and Eudragit(®) S100 for pH Responsive Release of Tenofovir

Women are still at high risk of contracting the human immunodeficiency virus (HIV) virus due to the lack of protection methods under their control, especially in sub-Saharan countries. Polyelectrolyte multilayer smart vaginal films based on chitosan derivatives (chitosan lactate, chitosan tartate, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cazorla-Luna, Raúl, Martín-Illana, Araceli, Notario-Pérez, Fernando, Bedoya, Luis Miguel, Tamayo, Aitana, Ruiz-Caro, Roberto, Rubio, Juan, Veiga, María-Dolores
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024361/
https://www.ncbi.nlm.nih.gov/pubmed/31936439
http://dx.doi.org/10.3390/md18010044
Descripción
Sumario:Women are still at high risk of contracting the human immunodeficiency virus (HIV) virus due to the lack of protection methods under their control, especially in sub-Saharan countries. Polyelectrolyte multilayer smart vaginal films based on chitosan derivatives (chitosan lactate, chitosan tartate, and chitosan citrate) and Eudragit(®) S100 were developed for the pH-sensitive release of Tenofovir. Films were characterized through texture analysis and scanning electron microscopy (SEM). Swelling and drug release studies were carried out in simulated vaginal fluid and a mixture of simulated vaginal and seminal fluids. Ex vivo mucoadhesion was evaluated in bovine vaginal mucosa. SEM micrographs revealed the formation of multilayer films. According to texture analysis, chitosan citrate was the most flexible compared to chitosan tartrate and lactate. The swelling studies showed a moderate water uptake (<300% in all cases), leading to the sustained release of Tenofovir in simulated vaginal fluid (up to 120 h), which was accelerated in the simulated fluid mixture (4–6 h). The films had high mucoadhesion in bovine vaginal mucosa. The multilayer films formed by a mixture of chitosan citrate and Eudragit(®) S100 proved to be the most promising, with zero toxicity, excellent mechanical properties, moderate swelling (<100%), high mucoadhesion capacity, and Tenofovir release of 120 h and 4 h in vaginal fluid and the simulated fluid mixture respectively.