Cargando…
Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling
Navigation of sperm in fluid flow, called rheotaxis, provides long‐range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca(2+)) influx via the sperm‐specific Ca(2+) channel Cat...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024840/ https://www.ncbi.nlm.nih.gov/pubmed/31957048 http://dx.doi.org/10.15252/embj.2019102363 |
_version_ | 1783498460837707776 |
---|---|
author | Schiffer, Christian Rieger, Steffen Brenker, Christoph Young, Samuel Hamzeh, Hussein Wachten, Dagmar Tüttelmann, Frank Röpke, Albrecht Kaupp, U Benjamin Wang, Tao Wagner, Alice Krallmann, Claudia Kliesch, Sabine Fallnich, Carsten Strünker, Timo |
author_facet | Schiffer, Christian Rieger, Steffen Brenker, Christoph Young, Samuel Hamzeh, Hussein Wachten, Dagmar Tüttelmann, Frank Röpke, Albrecht Kaupp, U Benjamin Wang, Tao Wagner, Alice Krallmann, Claudia Kliesch, Sabine Fallnich, Carsten Strünker, Timo |
author_sort | Schiffer, Christian |
collection | PubMed |
description | Navigation of sperm in fluid flow, called rheotaxis, provides long‐range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca(2+)) influx via the sperm‐specific Ca(2+) channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark‐field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper‐deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca(2+) influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca(2+)‐signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca(2+) flux. |
format | Online Article Text |
id | pubmed-7024840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70248402020-02-21 Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling Schiffer, Christian Rieger, Steffen Brenker, Christoph Young, Samuel Hamzeh, Hussein Wachten, Dagmar Tüttelmann, Frank Röpke, Albrecht Kaupp, U Benjamin Wang, Tao Wagner, Alice Krallmann, Claudia Kliesch, Sabine Fallnich, Carsten Strünker, Timo EMBO J Articles Navigation of sperm in fluid flow, called rheotaxis, provides long‐range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca(2+)) influx via the sperm‐specific Ca(2+) channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark‐field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper‐deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca(2+) influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca(2+)‐signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca(2+) flux. John Wiley and Sons Inc. 2020-01-19 2020-02-17 /pmc/articles/PMC7024840/ /pubmed/31957048 http://dx.doi.org/10.15252/embj.2019102363 Text en © 2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Articles Schiffer, Christian Rieger, Steffen Brenker, Christoph Young, Samuel Hamzeh, Hussein Wachten, Dagmar Tüttelmann, Frank Röpke, Albrecht Kaupp, U Benjamin Wang, Tao Wagner, Alice Krallmann, Claudia Kliesch, Sabine Fallnich, Carsten Strünker, Timo Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title | Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title_full | Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title_fullStr | Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title_full_unstemmed | Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title_short | Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling |
title_sort | rotational motion and rheotaxis of human sperm do not require functional catsper channels and transmembrane ca(2+) signaling |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7024840/ https://www.ncbi.nlm.nih.gov/pubmed/31957048 http://dx.doi.org/10.15252/embj.2019102363 |
work_keys_str_mv | AT schifferchristian rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT riegersteffen rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT brenkerchristoph rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT youngsamuel rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT hamzehhussein rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT wachtendagmar rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT tuttelmannfrank rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT ropkealbrecht rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT kauppubenjamin rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT wangtao rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT wagneralice rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT krallmannclaudia rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT klieschsabine rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT fallnichcarsten rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling AT strunkertimo rotationalmotionandrheotaxisofhumanspermdonotrequirefunctionalcatsperchannelsandtransmembraneca2signaling |