Cargando…
Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
The accurate automatic segmentation of gliomas and its intra-tumoral structures is important not only for treatment planning but also for follow-up evaluations. Several methods based on 2D and 3D Deep Neural Networks (DNN) have been developed to segment brain tumors and to classify different categor...
Autores principales: | Natekar, Parth, Kori, Avinash, Krishnamurthi, Ganapathy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025464/ https://www.ncbi.nlm.nih.gov/pubmed/32116620 http://dx.doi.org/10.3389/fncom.2020.00006 |
Ejemplares similares
-
Corrigendum: Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty Analysis
por: Natekar, Parth, et al.
Publicado: (2021) -
A generalized deep learning framework for whole-slide image segmentation and analysis
por: Khened, Mahendra, et al.
Publicado: (2021) -
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
por: Wang, Guotai, et al.
Publicado: (2019) -
Analyzing the Quality and Challenges of Uncertainty Estimations for Brain Tumor Segmentation
por: Jungo, Alain, et al.
Publicado: (2020) -
Animal Violence Demystified
por: Natarajan, Deepa, et al.
Publicado: (2010)