Cargando…
Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
One of the main roadblocks that still hamper the practical use of molecular nanomagnets is their cryogenic working temperature. In the pursuit of rational strategies to design new molecular nanomagnets with increasing blocking temperature, ab initio methodologies play an important role by guiding sy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025469/ https://www.ncbi.nlm.nih.gov/pubmed/32153756 http://dx.doi.org/10.1039/c9sc03133b |
_version_ | 1783498516401750016 |
---|---|
author | Escalera-Moreno, Luis Baldoví, José J. Gaita-Ariño, Alejandro Coronado, Eugenio |
author_facet | Escalera-Moreno, Luis Baldoví, José J. Gaita-Ariño, Alejandro Coronado, Eugenio |
author_sort | Escalera-Moreno, Luis |
collection | PubMed |
description | One of the main roadblocks that still hamper the practical use of molecular nanomagnets is their cryogenic working temperature. In the pursuit of rational strategies to design new molecular nanomagnets with increasing blocking temperature, ab initio methodologies play an important role by guiding synthetic efforts at the lab stage. Nevertheless, when evaluating vibration-induced spin relaxation, these methodologies are still far from being computationally fast enough to provide a useful predictive framework. Herein, we present an inexpensive first-principles method devoted to evaluating vibration-induced spin relaxation in molecular f-block single-ion magnets, with the important advantage of requiring only one CASSCF calculation. The method is illustrated using two case studies based on uranium as the magnetic centre. Finally, we propose chemical modifications in the ligand environment with the aim of suppressing spin relaxation. |
format | Online Article Text |
id | pubmed-7025469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-70254692020-03-09 Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation Escalera-Moreno, Luis Baldoví, José J. Gaita-Ariño, Alejandro Coronado, Eugenio Chem Sci Chemistry One of the main roadblocks that still hamper the practical use of molecular nanomagnets is their cryogenic working temperature. In the pursuit of rational strategies to design new molecular nanomagnets with increasing blocking temperature, ab initio methodologies play an important role by guiding synthetic efforts at the lab stage. Nevertheless, when evaluating vibration-induced spin relaxation, these methodologies are still far from being computationally fast enough to provide a useful predictive framework. Herein, we present an inexpensive first-principles method devoted to evaluating vibration-induced spin relaxation in molecular f-block single-ion magnets, with the important advantage of requiring only one CASSCF calculation. The method is illustrated using two case studies based on uranium as the magnetic centre. Finally, we propose chemical modifications in the ligand environment with the aim of suppressing spin relaxation. Royal Society of Chemistry 2019-12-02 /pmc/articles/PMC7025469/ /pubmed/32153756 http://dx.doi.org/10.1039/c9sc03133b Text en This journal is © The Royal Society of Chemistry 2020 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Escalera-Moreno, Luis Baldoví, José J. Gaita-Ariño, Alejandro Coronado, Eugenio Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation |
title | Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
|
title_full | Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
|
title_fullStr | Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
|
title_full_unstemmed | Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
|
title_short | Design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation
|
title_sort | design of high-temperature f-block molecular nanomagnets through the control of vibration-induced spin relaxation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025469/ https://www.ncbi.nlm.nih.gov/pubmed/32153756 http://dx.doi.org/10.1039/c9sc03133b |
work_keys_str_mv | AT escaleramorenoluis designofhightemperaturefblockmolecularnanomagnetsthroughthecontrolofvibrationinducedspinrelaxation AT baldovijosej designofhightemperaturefblockmolecularnanomagnetsthroughthecontrolofvibrationinducedspinrelaxation AT gaitaarinoalejandro designofhightemperaturefblockmolecularnanomagnetsthroughthecontrolofvibrationinducedspinrelaxation AT coronadoeugenio designofhightemperaturefblockmolecularnanomagnetsthroughthecontrolofvibrationinducedspinrelaxation |