Cargando…
Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees
OBJECTIVES: Little research has been done in pharmacoepidemiology on the use of machine learning for exploring medicinal treatment effectiveness in oncology. Therefore, the aim of this study was to explore the added value of machine learning methods to investigate individual treatment responses for...
Autores principales: | Geldof, Tine, Van Damme, Nancy, Huys, Isabelle, Van Dyck, Walter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025482/ https://www.ncbi.nlm.nih.gov/pubmed/32116674 http://dx.doi.org/10.3389/fphar.2019.01665 |
Ejemplares similares
-
Nearest Neighbour Propensity Score Matching and Bootstrapping for Estimating Binary Patient Response in Oncology: A Monte Carlo Simulation
por: Geldof, Tine, et al.
Publicado: (2020) -
Real-World Evidence Gathering in Oncology: The Need for a Biomedical Big Data Insight-Providing Federated Network
por: Geldof, Tine, et al.
Publicado: (2019) -
Barriers and Opportunities for Implementation of Outcome-Based Spread Payments for High-Cost, One-Shot Curative Therapies
por: Michelsen, Sissel, et al.
Publicado: (2020) -
Identification of target groups and individuals for adherence interventions using tree-based prediction models
por: Wendl, Johannes, et al.
Publicado: (2022) -
Off-Patent Biological and Biosimilar Medicines in Belgium: A Market Landscape Analysis
por: Vandenplas, Yannick, et al.
Publicado: (2021)