Cargando…
Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity
To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activ...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025527/ https://www.ncbi.nlm.nih.gov/pubmed/32116496 http://dx.doi.org/10.3389/fnins.2020.00034 |
_version_ | 1783498529117831168 |
---|---|
author | Ota, Yuya Takamoto, Kouichi Urakawa, Susumu Nishimaru, Hiroshi Matsumoto, Jumpei Takamura, Yusaku Mihara, Masahito Ono, Taketoshi Nishijo, Hisao |
author_facet | Ota, Yuya Takamoto, Kouichi Urakawa, Susumu Nishimaru, Hiroshi Matsumoto, Jumpei Takamura, Yusaku Mihara, Masahito Ono, Taketoshi Nishijo, Hisao |
author_sort | Ota, Yuya |
collection | PubMed |
description | To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activity during a motor rehabilitation task. Thirty-one right-handed healthy subjects participated in this study. They received motor imagery training six times for 2 weeks under fNIRS neurofeedback from the aPFC, in which they were instructed to increase aPFC activity. The real group subjects (n = 16) were shown real fNIRS neurofeedback signals from the aPFC, whereas the sham group subjects (n = 15) were shown irrelevant randomized signals during neurofeedback training. Before and after the training, hand dexterity was assessed by a motor rehabilitation task, during which cerebral hemodynamic activity was also measured. The results indicated that aPFC activity was increased during the training, and performance improvement rates in the rehabilitation task after the training was increased in the real group when compared with the sham group. Improvement rates of mean aPFC activity across the training were positively correlated with performance improvement rates in the motor rehabilitation task. During the motor rehabilitation task after the training, the hemodynamic activity in the left somatosensory motor-related areas [premotor area (PM), primary motor area (M1), and primary somatosensory area (S1)] was increased in the real group, whereas the hemodynamic activity was increased in the supplementary motor area in the sham group. This hemodynamic activity increases in the somatosensory motor-related areas after the training correlated with aPFC activity during the last 2 days of motor imagery training. Furthermore, improvement rates of M1 hemodynamic activity after the training was positively correlated with performance improvement rates in the motor rehabilitation task. The results suggest that the aPFC might shape activity in the somatosensory motor-related areas to improve hand dexterity. These findings further suggest that the motor imagery training using neurofeedback signals from the aPFC might be useful to patients with motor disability. |
format | Online Article Text |
id | pubmed-7025527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-70255272020-02-28 Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity Ota, Yuya Takamoto, Kouichi Urakawa, Susumu Nishimaru, Hiroshi Matsumoto, Jumpei Takamura, Yusaku Mihara, Masahito Ono, Taketoshi Nishijo, Hisao Front Neurosci Neuroscience To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activity during a motor rehabilitation task. Thirty-one right-handed healthy subjects participated in this study. They received motor imagery training six times for 2 weeks under fNIRS neurofeedback from the aPFC, in which they were instructed to increase aPFC activity. The real group subjects (n = 16) were shown real fNIRS neurofeedback signals from the aPFC, whereas the sham group subjects (n = 15) were shown irrelevant randomized signals during neurofeedback training. Before and after the training, hand dexterity was assessed by a motor rehabilitation task, during which cerebral hemodynamic activity was also measured. The results indicated that aPFC activity was increased during the training, and performance improvement rates in the rehabilitation task after the training was increased in the real group when compared with the sham group. Improvement rates of mean aPFC activity across the training were positively correlated with performance improvement rates in the motor rehabilitation task. During the motor rehabilitation task after the training, the hemodynamic activity in the left somatosensory motor-related areas [premotor area (PM), primary motor area (M1), and primary somatosensory area (S1)] was increased in the real group, whereas the hemodynamic activity was increased in the supplementary motor area in the sham group. This hemodynamic activity increases in the somatosensory motor-related areas after the training correlated with aPFC activity during the last 2 days of motor imagery training. Furthermore, improvement rates of M1 hemodynamic activity after the training was positively correlated with performance improvement rates in the motor rehabilitation task. The results suggest that the aPFC might shape activity in the somatosensory motor-related areas to improve hand dexterity. These findings further suggest that the motor imagery training using neurofeedback signals from the aPFC might be useful to patients with motor disability. Frontiers Media S.A. 2020-01-29 /pmc/articles/PMC7025527/ /pubmed/32116496 http://dx.doi.org/10.3389/fnins.2020.00034 Text en Copyright © 2020 Ota, Takamoto, Urakawa, Nishimaru, Matsumoto, Takamura, Mihara, Ono and Nishijo. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Ota, Yuya Takamoto, Kouichi Urakawa, Susumu Nishimaru, Hiroshi Matsumoto, Jumpei Takamura, Yusaku Mihara, Masahito Ono, Taketoshi Nishijo, Hisao Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title | Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title_full | Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title_fullStr | Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title_full_unstemmed | Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title_short | Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity |
title_sort | motor imagery training with neurofeedback from the frontal pole facilitated sensorimotor cortical activity and improved hand dexterity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025527/ https://www.ncbi.nlm.nih.gov/pubmed/32116496 http://dx.doi.org/10.3389/fnins.2020.00034 |
work_keys_str_mv | AT otayuya motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT takamotokouichi motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT urakawasusumu motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT nishimaruhiroshi motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT matsumotojumpei motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT takamurayusaku motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT miharamasahito motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT onotaketoshi motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity AT nishijohisao motorimagerytrainingwithneurofeedbackfromthefrontalpolefacilitatedsensorimotorcorticalactivityandimprovedhanddexterity |