Cargando…
Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
PURPOSE: To assess the performance of deep learning algorithms for different tasks in retinal fundus images: (1) detection of retinal fundus images versus optical coherence tomography (OCT) or other images, (2) evaluation of good quality retinal fundus images, (3) distinction between right eye (OD)...
Autores principales: | Zapata, Miguel Angel, Royo-Fibla, Dídac, Font, Octavi, Vela, José Ignacio, Marcantonio, Ivanna, Moya-Sánchez, Eduardo Ulises, Sánchez-Pérez, Abraham, Garcia-Gasulla, Darío, Cortés, Ulises, Ayguadé, Eduard, Labarta, Jesus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025650/ https://www.ncbi.nlm.nih.gov/pubmed/32103888 http://dx.doi.org/10.2147/OPTH.S235751 |
Ejemplares similares
-
Validation of an autonomous artificial intelligence–based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context
por: Font, Octavi, et al.
Publicado: (2022) -
Artificial Intelligence for the Detection of Diabetic Retinopathy in Primary Care: Protocol for Algorithm Development
por: Vidal-Alaball, Josep, et al.
Publicado: (2019) -
An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging
por: Bhuiyan, Alauddin, et al.
Publicado: (2021) -
The ethical use of high-performance computing and artificial intelligence: fighting COVID-19 at Barcelona Supercomputing Center
por: Cortés, Ulises, et al.
Publicado: (2021) -
Data on OCT and fundus images for the detection of glaucoma
por: Raja, Hina, et al.
Publicado: (2020)