Cargando…
Publisher Correction: Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis
Autores principales: | Nakamoto, Takahiro, Takahashi, Wataru, Haga, Akihiro, Takahashi, Satoshi, Kiryu, Shigeru, Nawa, Kanabu, Ohta, Takeshi, Ozaki, Sho, Nozawa, Yuki, Tanaka, Shota, Mukasa, Akitake, Nakagawa, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026034/ https://www.ncbi.nlm.nih.gov/pubmed/32066815 http://dx.doi.org/10.1038/s41598-020-60086-3 |
Ejemplares similares
-
Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis
por: Nakamoto, Takahiro, et al.
Publicado: (2019) -
Stereotactic body radiotherapy for centrally-located lung tumors with 56 Gy in seven fractions: A retrospective study
por: Aoki, Shuri, et al.
Publicado: (2018) -
Acceptable fetal dose using flattening filter-free volumetric arc therapy (FFF VMAT) in postoperative chemoradiotherapy of tongue cancer during pregnancy()
por: Takahashi, Wataru, et al.
Publicado: (2019) -
Cone Beam Computed Tomography Image Quality Improvement Using a Deep Convolutional Neural Network
por: Kida, Satoshi, et al.
Publicado: (2018) -
Optimization of treatment strategy by using a machine learning model to predict survival time of patients with malignant glioma after radiotherapy
por: Mizutani, Takuya, et al.
Publicado: (2019)