Cargando…
Predicting treatment dropout after antidepressant initiation
Antidepressants exhibit similar efficacy, but varying tolerability, in randomized controlled trials. Predicting tolerability in real-world clinical populations may facilitate personalization of treatment and maximize adherence. This retrospective longitudinal cohort study aimed to determine the exte...
Autores principales: | Pradier, Melanie F., McCoy Jr, Thomas H., Hughes, Michael, Perlis, Roy H., Doshi-Velez, Finale |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026064/ https://www.ncbi.nlm.nih.gov/pubmed/32066733 http://dx.doi.org/10.1038/s41398-020-0716-y |
Ejemplares similares
-
Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models
por: Hughes, Michael C., et al.
Publicado: (2020) -
How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection
por: Jacobs, Maia, et al.
Publicado: (2021) -
Assessment of the Performance Consistency of an Adverse Outcome Prediction Tool for Patients Hospitalized With COVID-19
por: Castro, Victor M., et al.
Publicado: (2021) -
A Tool to Utilize Adverse Effect Profiles to Identify Brain-Active Medications for Repurposing
por: McCoy, Thomas H., et al.
Publicado: (2015) -
Hard for humans, hard for machines: predicting readmission after psychiatric hospitalization using narrative notes
por: Boag, William, et al.
Publicado: (2021)