Cargando…
Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs
Approximate Bayesian computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to an established tool for modelling time-dependent, real-world phenomena with und...
Autores principales: | Buckwar, Evelyn, Tamborrino, Massimiliano, Tubikanec, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026277/ https://www.ncbi.nlm.nih.gov/pubmed/32132771 http://dx.doi.org/10.1007/s11222-019-09909-6 |
Ejemplares similares
-
Stochastic differential equations, backward SDEs, partial differential equations
por: Pardoux, Etienne, et al.
Publicado: (2014) -
Jump SDEs and the study of their densities: a self-study book
por: Kohatsu-Higa, Arturo, et al.
Publicado: (2019) -
Approximation of SDEs: a stochastic sewing approach
por: Butkovsky, Oleg, et al.
Publicado: (2021) -
Convergence of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient
por: Leobacher, Gunther, et al.
Publicado: (2017) -
A forward-backward SDEs approach to pricing in carbon markets
por: Chassagneux, Jean-François, et al.
Publicado: (2017)