Cargando…
DCNN for condition monitoring and fault detection in rotating machines and its contribution to the understanding of machine nature
Rotating machines are critical equipment in many processes, and failures in their operation can have serious implications. Consequently, fault detection in rotating machines has been widely investigated. Conventional detection systems include two blocks: feature extraction and classification. These...
Autores principales: | González-Muñiz, Ana, Díaz, Ignacio, Cuadrado, Abel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026294/ https://www.ncbi.nlm.nih.gov/pubmed/32090183 http://dx.doi.org/10.1016/j.heliyon.2020.e03395 |
Ejemplares similares
-
Electric machines: modeling, condition monitoring, and fault diagnosis
por: Toliyat, Hamid A, et al.
Publicado: (2012) -
Machine learning for fault analysis in rotating machinery: A comprehensive review
por: Das, Oguzhan, et al.
Publicado: (2023) -
Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis
por: Jung, Wonho, et al.
Publicado: (2023) -
Intelligent condition based monitoring: for turbines, compressors, and other rotating machines
por: Verma, Nishchal K, et al.
Publicado: (2020) -
An Automated Data Fusion-Based Gear Faults Classification Framework in Rotating Machines
por: Cao, Ruifeng, et al.
Publicado: (2021)