Cargando…
Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging
Significance: We introduce an application of machine learning trained on optical phase features of epithelial and mesenchymal cells to grade cancer cells’ morphologies, relevant to evaluation of cancer phenotype in screening assays and clinical biopsies. Aim: Our objective was to determine quantitat...
Autores principales: | Lam, Van K., Nguyen, Thanh, Bui, Vy, Chung, Byung Min, Chang, Lin-Ching, Nehmetallah, George, Raub, Christopher B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026523/ https://www.ncbi.nlm.nih.gov/pubmed/32072775 http://dx.doi.org/10.1117/1.JBO.25.2.026002 |
Ejemplares similares
-
Virtual organelle self-coding for fluorescence imaging via adversarial learning
por: Nguyen, Thanh, et al.
Publicado: (2020) -
Context encoding enables machine learning-based quantitative photoacoustics
por: Kirchner, Thomas, et al.
Publicado: (2018) -
Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging
por: Boonruangkan, Jeeranan, et al.
Publicado: (2021) -
Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis
por: Gordon, George S. D., et al.
Publicado: (2019) -
Reactive Hemophagocytic Lymphohistiocytosis-Associated Kikuchi-Fujimoto Disease After a Staphylococcus epidermidis Cutaneous Infection: The First Case Report
por: Cao, Ngoc Thanh, et al.
Publicado: (2021)