Cargando…

Structure of HhaI endonuclease with cognate DNA at an atomic resolution of 1.0 Å

HhaI, a Type II restriction endonuclease, recognizes the symmetric sequence 5′-GCG↓C-3′ in duplex DNA and cleaves (‘↓’) to produce fragments with 2-base, 3′-overhangs. We determined the structure of HhaI in complex with cognate DNA at an ultra-high atomic resolution of 1.0 Å. Most restriction enzyme...

Descripción completa

Detalles Bibliográficos
Autores principales: Horton, John R, Yang, Jie, Zhang, Xing, Petronzio, Theresa, Fomenkov, Alexey, Wilson, Geoffrey G, Roberts, Richard J, Cheng, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026639/
https://www.ncbi.nlm.nih.gov/pubmed/31879785
http://dx.doi.org/10.1093/nar/gkz1195
Descripción
Sumario:HhaI, a Type II restriction endonuclease, recognizes the symmetric sequence 5′-GCG↓C-3′ in duplex DNA and cleaves (‘↓’) to produce fragments with 2-base, 3′-overhangs. We determined the structure of HhaI in complex with cognate DNA at an ultra-high atomic resolution of 1.0 Å. Most restriction enzymes act as dimers with two catalytic sites, and cleave the two strands of duplex DNA simultaneously, in a single binding event. HhaI, in contrast, acts as a monomer with only one catalytic site, and cleaves the DNA strands sequentially, one after the other. HhaI comprises three domains, each consisting of a mixed five-stranded β sheet with a defined function. The first domain contains the catalytic-site; the second contains residues for sequence recognition; and the third contributes to non-specific DNA binding. The active-site belongs to the ‘PD-D/EXK’ superfamily of nucleases and contains the motif SD-X(11)-EAK. The first two domains are similar in structure to two other monomeric restriction enzymes, HinP1I (G↓CGC) and MspI (C↓CGG), which produce fragments with 5′-overhangs. The third domain, present only in HhaI, shifts the positions of the recognition residues relative to the catalytic site enabling this enzyme to cleave the recognition sequence at a different position. The structure of M.HhaI, the biological methyltransferase partner of HhaI, was determined earlier. Together, these two structures represent the first natural pair of restriction-modification enzymes to be characterized in atomic detail.