Cargando…

Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?

Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the t...

Descripción completa

Detalles Bibliográficos
Autores principales: Parisi, M A, Cramp, R L, Gordos, M A, Franklin, C E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026996/
https://www.ncbi.nlm.nih.gov/pubmed/32099655
http://dx.doi.org/10.1093/conphys/coaa005
_version_ 1783498776226299904
author Parisi, M A
Cramp, R L
Gordos, M A
Franklin, C E
author_facet Parisi, M A
Cramp, R L
Gordos, M A
Franklin, C E
author_sort Parisi, M A
collection PubMed
description Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the temperature of downstream waters by up to 16°C. Depending on the release duration, these hypothermic conditions can persist for many months. The capacity of ectothermic species to tolerate or rapidly adjust to acute temperature changes may determine the nature and magnitude of the impact of CWP on affected species. This study assessed the impacts of an acute reduction in water temperature on the physiological function and locomotor performance of juvenile silver perch (Bidyanus bidyanus) and examined their capacity to thermally compensate for the depressive effects of low temperatures via phenotypic plasticity. Locomotor performance (Ucrit and Usprint) and energetic costs (routine and maximum metabolic rate) were measured at multiple points over a 10-week period following an abrupt 10°C drop in water temperature. We also measured the thermal sensitivity of metabolic enzymes from muscle samples taken from fish following the exposure period. Cold exposure had significant depressive effects on physiological traits, resulting in decreases in performance between 10% and 55%. Although there was partial acclimation of Ucrit (~35% increase in performance) and complete compensation of metabolic rate, this occurred late in the exposure period, meaning silver perch were unable to rapidly compensate for the depressive effects of thermal pollution. The results of this study have substantial implications for the management of cold water releases from large-scale dams and the conservation of native freshwater fish species, as this form of thermal pollution can act as a barrier to fish movement, cause reduced recruitment, ecological community shifts and disruptions to timing and success of reproduction.
format Online
Article
Text
id pubmed-7026996
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-70269962020-02-25 Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity? Parisi, M A Cramp, R L Gordos, M A Franklin, C E Conserv Physiol Research Article Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the temperature of downstream waters by up to 16°C. Depending on the release duration, these hypothermic conditions can persist for many months. The capacity of ectothermic species to tolerate or rapidly adjust to acute temperature changes may determine the nature and magnitude of the impact of CWP on affected species. This study assessed the impacts of an acute reduction in water temperature on the physiological function and locomotor performance of juvenile silver perch (Bidyanus bidyanus) and examined their capacity to thermally compensate for the depressive effects of low temperatures via phenotypic plasticity. Locomotor performance (Ucrit and Usprint) and energetic costs (routine and maximum metabolic rate) were measured at multiple points over a 10-week period following an abrupt 10°C drop in water temperature. We also measured the thermal sensitivity of metabolic enzymes from muscle samples taken from fish following the exposure period. Cold exposure had significant depressive effects on physiological traits, resulting in decreases in performance between 10% and 55%. Although there was partial acclimation of Ucrit (~35% increase in performance) and complete compensation of metabolic rate, this occurred late in the exposure period, meaning silver perch were unable to rapidly compensate for the depressive effects of thermal pollution. The results of this study have substantial implications for the management of cold water releases from large-scale dams and the conservation of native freshwater fish species, as this form of thermal pollution can act as a barrier to fish movement, cause reduced recruitment, ecological community shifts and disruptions to timing and success of reproduction. Oxford University Press 2020-02-18 /pmc/articles/PMC7026996/ /pubmed/32099655 http://dx.doi.org/10.1093/conphys/coaa005 Text en © The Author(s) 2020. Published by Oxford University Press and the Society for Experimental Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Parisi, M A
Cramp, R L
Gordos, M A
Franklin, C E
Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title_full Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title_fullStr Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title_full_unstemmed Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title_short Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
title_sort can the impacts of cold-water pollution on fish be mitigated by thermal plasticity?
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026996/
https://www.ncbi.nlm.nih.gov/pubmed/32099655
http://dx.doi.org/10.1093/conphys/coaa005
work_keys_str_mv AT parisima cantheimpactsofcoldwaterpollutiononfishbemitigatedbythermalplasticity
AT cramprl cantheimpactsofcoldwaterpollutiononfishbemitigatedbythermalplasticity
AT gordosma cantheimpactsofcoldwaterpollutiononfishbemitigatedbythermalplasticity
AT franklince cantheimpactsofcoldwaterpollutiononfishbemitigatedbythermalplasticity