Cargando…

Analyzing collective motion with machine learning and topology

We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behavio...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhaskar, Dhananjay, Manhart, Angelika, Milzman, Jesse, Nardini, John T., Storey, Kathleen M., Topaz, Chad M., Ziegelmeier, Lori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027427/
https://www.ncbi.nlm.nih.gov/pubmed/31893635
http://dx.doi.org/10.1063/1.5125493
Descripción
Sumario:We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al., Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to collective behaviors such as flocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to recover model parameters from the simulation data, we apply machine learning techniques to two different types of input. First, we input time series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that is based on traditional order parameters.