Cargando…
Reduction of Activated Alkenes by P(III)/P(V) Redox Cycling Catalysis
The carbon–carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl‐substitute...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027467/ https://www.ncbi.nlm.nih.gov/pubmed/31793147 http://dx.doi.org/10.1002/anie.201912991 |
Sumario: | The carbon–carbon double bond of unsaturated carbonyl compounds was readily reduced by using a phosphetane oxide catalyst in the presence of a simple organosilane as the terminal reductant and water as the hydrogen source. Quantitative hydrogenation was observed when 1.0 mol % of a methyl‐substituted phosphetane oxide was employed as the catalyst. The procedure is highly selective towards activated double bonds, tolerating a variety of functional groups that are usually prone to reduction. In total, 25 alkenes and two alkynes were hydrogenated to the corresponding alkanes in excellent yields of up to 99 %. Notably, less active poly(methylhydrosiloxane) could also be utilized as the terminal reductant. Mechanistic investigations revealed the phosphane as the catalyst resting state and a protonation/deprotonation sequence as the crucial step in the catalytic cycle. |
---|