Cargando…

Efficient Plastic Waste Recycling to Value‐Added Products by Integrated Biomass Processing

The industrial production of polymeric materials is continuously increasing, but sustainable concepts directing towards a circular economy remain rather elusive. The present investigation focuses on the recycling of polyoxymethylene polymers, facilitated through combined catalytic processing of poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Beydoun, Kassem, Klankermayer, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027741/
https://www.ncbi.nlm.nih.gov/pubmed/31912617
http://dx.doi.org/10.1002/cssc.201902880
Descripción
Sumario:The industrial production of polymeric materials is continuously increasing, but sustainable concepts directing towards a circular economy remain rather elusive. The present investigation focuses on the recycling of polyoxymethylene polymers, facilitated through combined catalytic processing of polymer waste and biomass‐derived diols. The integrated concept enables the production of value‐added cyclic acetals, which can flexibly function as solvents, fuel additives, pharmaceutical intermediates, and even monomeric materials for polymerization reactions. Based on this approach, an open‐loop recycling of these waste materials can be envisaged in which the carbon content of the polymer waste is efficiently utilized as a C1 building block, paving the way to unprecedented possibilities within a circular economy of polyoxymethylene polymers.