Cargando…

Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRP‐Based Radical Photopolymerization with Blue LEDs

Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom‐doped CDs indicated that N‐doped CDs could serve as an effectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Kütahya, Ceren, Wang, Ping, Li, Shujun, Liu, Shouxin, Li, Jian, Chen, Zhijun, Strehmel, Bernd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7027833/
https://www.ncbi.nlm.nih.gov/pubmed/31724298
http://dx.doi.org/10.1002/anie.201912343
Descripción
Sumario:Carbon dots (CDs) have been used for the first time as a sensitizer to initiate and activate free radical and controlled radical polymerization, respectively, based on an ATRP protocol with blue LEDs. Consideration of diverse heteroatom‐doped CDs indicated that N‐doped CDs could serve as an effective photocatalyst and photosensitizer in combination with LEDs emitting either at 405 nm or 470 nm. Free radical polymerization was initiated by combining the CDs with an iodonium or sulfonium salt in tri(propylene glycol) diacrylate. Polymerization of methyl methacrylate (MMA) by photo‐induced ATRP was achieved with CDs and ethyl α‐bromophenylacetate using Cu(II) as catalyst in the ppm range. The polymers obtained showed temporal control, narrower dispersity ≲1.5, and chain‐end fidelity. The first‐order kinetics and ON/OFF experiments additionally gave evidence of the constant concentration of polymer radicals. No remarkable cytotoxic activity was observed for the CDs, underlining their biocompatibility.