Cargando…
Learning spatiotemporal signals using a recurrent spiking network that discretizes time
Learning to produce spatiotemporal sequences is a common task that the brain has to solve. The same neurons may be used to produce different sequential behaviours. The way the brain learns and encodes such tasks remains unknown as current computational models do not typically use realistic biologica...
Autores principales: | Maes, Amadeus, Barahona, Mauricio, Clopath, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028299/ https://www.ncbi.nlm.nih.gov/pubmed/31961853 http://dx.doi.org/10.1371/journal.pcbi.1007606 |
Ejemplares similares
-
Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons
por: Maes, Amadeus, et al.
Publicado: (2021) -
Long- and short-term history effects in a spiking network model of statistical learning
por: Maes, Amadeus, et al.
Publicado: (2023) -
Supervised learning in spiking neural networks with FORCE training
por: Nicola, Wilten, et al.
Publicado: (2017) -
Spatiotemporal dynamics in spiking recurrent neural networks using modified-full-FORCE on EEG signals
por: Ioannides, Georgios, et al.
Publicado: (2022) -
Voltage and Spike Timing Interact in STDP – A Unified Model
por: Clopath, Claudia, et al.
Publicado: (2010)