Cargando…
Beyond the flow rate: the importance of thermal range, flow intensity, and distribution for water-efficient showers
Studies show that user behaviours have not necessarily changed, despite the prevalence of water-efficient products in the market. One reason is because the technical emphasis for delivering the water use efficiency of products has focused on reducing the flow rate. Therefore, this study was undertak...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028815/ https://www.ncbi.nlm.nih.gov/pubmed/31889274 http://dx.doi.org/10.1007/s11356-019-07235-y |
Sumario: | Studies show that user behaviours have not necessarily changed, despite the prevalence of water-efficient products in the market. One reason is because the technical emphasis for delivering the water use efficiency of products has focused on reducing the flow rate. Therefore, this study was undertaken to examine the physical parameters that define the technical efficiency of showerheads against the experiential performance (and therefore the satisfaction with the showerheads). These parameters were measured in a controlled laboratory environment and the findings were triangulated against user feedback from in-home trials. Synergies between the laboratory data and user feedback were found. Notably, it was found that water spray intensity, distribution, and temperature loss all impact the quality of showering experience. These factors also influence shower duration—and thus the volume of water used in the shower. Significantly, these technical metrics affected the overall experiential performance of such products from the users’ perspective. Therefore, the design of water-efficient showerheads, in addition to delivering water discharge savings, should avoid poor spray distribution, intensity, and heat retention. The implications of the findings are that water efficiency labelling and product standards should extend beyond the emphasis on limiting the flow rates—typically to 9 l per min for showerheads. This study shows good merit for including the spray intensity (pressure), distribution, and degree of heat loss, in addition to the discharge rate, as part of the performance and efficiency considerations of showerheads. |
---|