Cargando…

Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer

A spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Vermolen, Fred, Pölönen, Ilkka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028824/
https://www.ncbi.nlm.nih.gov/pubmed/31858196
http://dx.doi.org/10.1007/s00285-019-01367-y
Descripción
Sumario:A spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer state’ that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mice and our model has been obtained.