Cargando…
Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer
A spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible tr...
Autores principales: | Vermolen, Fred, Pölönen, Ilkka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028824/ https://www.ncbi.nlm.nih.gov/pubmed/31858196 http://dx.doi.org/10.1007/s00285-019-01367-y |
Ejemplares similares
-
Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Uncertainties in
Markov State Models of Small Proteins
por: Kozlowski, Nicolai, et al.
Publicado: (2023) -
Agent-based modelling and parameter sensitivity analysis with a finite-element method for skin contraction
por: Peng, Qiyao, et al.
Publicado: (2020) -
Markov processes and controlled Markov chains
por: Hou, Zhenting, et al.
Publicado: (2002) -
Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty
por: Green, P. L., et al.
Publicado: (2015)