Cargando…
Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus
This paper evaluates the metabolism-based performance of a number of centralised and decentralised water reuse strategies and their impact on integrated urban water systems (UWS) based on the nexus of water-energy-pollution. The performance assessment is based on a comprehensive and quantitative fra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028841/ https://www.ncbi.nlm.nih.gov/pubmed/31129899 http://dx.doi.org/10.1007/s11356-019-05465-8 |
_version_ | 1783499054496350208 |
---|---|
author | Landa-Cansigno, Oriana Behzadian, Kourosh Davila-Cano, Diego I. Campos, Luiza C. |
author_facet | Landa-Cansigno, Oriana Behzadian, Kourosh Davila-Cano, Diego I. Campos, Luiza C. |
author_sort | Landa-Cansigno, Oriana |
collection | PubMed |
description | This paper evaluates the metabolism-based performance of a number of centralised and decentralised water reuse strategies and their impact on integrated urban water systems (UWS) based on the nexus of water-energy-pollution. The performance assessment is based on a comprehensive and quantitative framework of urban water metabolism developed for integrated UWS over a long-term planning horizon. UWS performance is quantified based on the tracking down of mass balance flows/fluxes of water, energy, materials, costs, pollutants, and other environmental impacts using the WaterMet(2) tool. The assessment framework is defined as a set of key performance indicators (KPIs) within the context of the water-energy-pollution nexus. The strategies comprise six decentralised water reuse configurations (greywater or domestic wastewater) and three centralised ones, all within three proportions of adoption by domestic users (i.e. 20, 50, and 100%). This methodology was demonstrated in the real-world case study of San Francisco del Rincon and Purisima del Rincon cities in Mexico. The results indicate that decentralised water reuse strategies using domestic wastewater can provide the best performance in the UWS with respect to water conservation, green house gas (GHG) emissions, and eutrophication indicators, while energy saving is almost negligible. On the other hand, centralised strategies can achieve the best performance for energy saving among the water reuse strategies. The results also show metabolism performance assessment in a complex system such as integrated UWS can reveal the magnitude of the interactions between the nexus elements (i.e. water, energy, and pollution). In addition, it can also reveal any unexpected influences of these elements that might exist between the UWS components and overall system. |
format | Online Article Text |
id | pubmed-7028841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-70288412020-03-03 Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus Landa-Cansigno, Oriana Behzadian, Kourosh Davila-Cano, Diego I. Campos, Luiza C. Environ Sci Pollut Res Int Local, Regional and Global Best Practice for Water This paper evaluates the metabolism-based performance of a number of centralised and decentralised water reuse strategies and their impact on integrated urban water systems (UWS) based on the nexus of water-energy-pollution. The performance assessment is based on a comprehensive and quantitative framework of urban water metabolism developed for integrated UWS over a long-term planning horizon. UWS performance is quantified based on the tracking down of mass balance flows/fluxes of water, energy, materials, costs, pollutants, and other environmental impacts using the WaterMet(2) tool. The assessment framework is defined as a set of key performance indicators (KPIs) within the context of the water-energy-pollution nexus. The strategies comprise six decentralised water reuse configurations (greywater or domestic wastewater) and three centralised ones, all within three proportions of adoption by domestic users (i.e. 20, 50, and 100%). This methodology was demonstrated in the real-world case study of San Francisco del Rincon and Purisima del Rincon cities in Mexico. The results indicate that decentralised water reuse strategies using domestic wastewater can provide the best performance in the UWS with respect to water conservation, green house gas (GHG) emissions, and eutrophication indicators, while energy saving is almost negligible. On the other hand, centralised strategies can achieve the best performance for energy saving among the water reuse strategies. The results also show metabolism performance assessment in a complex system such as integrated UWS can reveal the magnitude of the interactions between the nexus elements (i.e. water, energy, and pollution). In addition, it can also reveal any unexpected influences of these elements that might exist between the UWS components and overall system. Springer Berlin Heidelberg 2019-05-26 2020 /pmc/articles/PMC7028841/ /pubmed/31129899 http://dx.doi.org/10.1007/s11356-019-05465-8 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Local, Regional and Global Best Practice for Water Landa-Cansigno, Oriana Behzadian, Kourosh Davila-Cano, Diego I. Campos, Luiza C. Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title | Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title_full | Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title_fullStr | Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title_full_unstemmed | Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title_short | Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
title_sort | performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus |
topic | Local, Regional and Global Best Practice for Water |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028841/ https://www.ncbi.nlm.nih.gov/pubmed/31129899 http://dx.doi.org/10.1007/s11356-019-05465-8 |
work_keys_str_mv | AT landacansignooriana performanceassessmentofwaterreusestrategiesusingintegratedframeworkofurbanwatermetabolismandwaterenergypollutionnexus AT behzadiankourosh performanceassessmentofwaterreusestrategiesusingintegratedframeworkofurbanwatermetabolismandwaterenergypollutionnexus AT davilacanodiegoi performanceassessmentofwaterreusestrategiesusingintegratedframeworkofurbanwatermetabolismandwaterenergypollutionnexus AT camposluizac performanceassessmentofwaterreusestrategiesusingintegratedframeworkofurbanwatermetabolismandwaterenergypollutionnexus |