Cargando…
Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics
Here, the role of the dairy-processing chain as a reservoir of antimicrobial resistance (AR) determinants and a source of novel biocontrol quorum-sensing inhibitors is assessed through a functional metagenomics approach. A metagenomic library comprising ∼22,000 recombinant clones was built from DNA...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029220/ https://www.ncbi.nlm.nih.gov/pubmed/32071160 http://dx.doi.org/10.1128/mSystems.00723-19 |
_version_ | 1783499121630380032 |
---|---|
author | Alexa (Oniciuc), Elena A. Walsh, Calum J. Coughlan, Laura M. Awad, Amal Simon, Cezara A. Ruiz, Lorena Crispie, Fiona Cotter, Paul D. Alvarez-Ordóñez, Avelino |
author_facet | Alexa (Oniciuc), Elena A. Walsh, Calum J. Coughlan, Laura M. Awad, Amal Simon, Cezara A. Ruiz, Lorena Crispie, Fiona Cotter, Paul D. Alvarez-Ordóñez, Avelino |
author_sort | Alexa (Oniciuc), Elena A. |
collection | PubMed |
description | Here, the role of the dairy-processing chain as a reservoir of antimicrobial resistance (AR) determinants and a source of novel biocontrol quorum-sensing inhibitors is assessed through a functional metagenomics approach. A metagenomic library comprising ∼22,000 recombinant clones was built from DNA isolated from raw milk, raw milk cheeses, and cheese-processing environment swab samples. The high-throughput sequencing of 9,216 recombinant clones showed that lactic acid bacteria (LAB) dominated the microbial communities of raw milk cheese, while Gram-negative microorganisms of animal or soil origin dominated the microbiota of raw milk and cheese-processing environments. Although functional screening of the metagenomic library did not recover potential quorum-sensing inhibitors, in silico analysis using an in-house database built specifically for this study identified homologues to several genes encoding proteins with predicted quorum-quenching activity, among which, the QsdH hydrolase was the most abundant. In silico screening of the library identified LAB, and especially Lactococcus lactis, as a relevant reservoir of AR determinants in cheese. Functional screening of the library allowed the isolation of 13 recombinant clones showing an increased resistance toward ampicillin, which in all cases was accompanied by a reduced susceptibility to a wide range of β-lactam antibiotics. This study shows that the dairy-processing environment is a rich reservoir of AR determinants, which vary by sample source, and suggests that combining next-generation sequencing with functional metagenomics can be of use in overcoming the limitations of both approaches. IMPORTANCE The study shows the potential of functional metagenomics analyses to uncover the diversity of functions in microbial communities prevailing in dairy products and their processing environments, evidencing that lactic acid bacteria (LAB) dominate the cheese microbiota, whereas Gram-negative microorganisms of animal or soil origin dominate the microbiota of milk and cheese-processing environments. The functional and in silico screening of the library allowed the identification of LAB, and especially Lactococcus lactis, as a relevant reservoir of antimicrobial resistance (AR) determinants in cheese. Quorum-quenching (QQ) determinants were not recovered through the execution of wet-lab function-based screenings but were detected through in silico sequencing-based analyses. |
format | Online Article Text |
id | pubmed-7029220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-70292202020-02-26 Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics Alexa (Oniciuc), Elena A. Walsh, Calum J. Coughlan, Laura M. Awad, Amal Simon, Cezara A. Ruiz, Lorena Crispie, Fiona Cotter, Paul D. Alvarez-Ordóñez, Avelino mSystems Research Article Here, the role of the dairy-processing chain as a reservoir of antimicrobial resistance (AR) determinants and a source of novel biocontrol quorum-sensing inhibitors is assessed through a functional metagenomics approach. A metagenomic library comprising ∼22,000 recombinant clones was built from DNA isolated from raw milk, raw milk cheeses, and cheese-processing environment swab samples. The high-throughput sequencing of 9,216 recombinant clones showed that lactic acid bacteria (LAB) dominated the microbial communities of raw milk cheese, while Gram-negative microorganisms of animal or soil origin dominated the microbiota of raw milk and cheese-processing environments. Although functional screening of the metagenomic library did not recover potential quorum-sensing inhibitors, in silico analysis using an in-house database built specifically for this study identified homologues to several genes encoding proteins with predicted quorum-quenching activity, among which, the QsdH hydrolase was the most abundant. In silico screening of the library identified LAB, and especially Lactococcus lactis, as a relevant reservoir of AR determinants in cheese. Functional screening of the library allowed the isolation of 13 recombinant clones showing an increased resistance toward ampicillin, which in all cases was accompanied by a reduced susceptibility to a wide range of β-lactam antibiotics. This study shows that the dairy-processing environment is a rich reservoir of AR determinants, which vary by sample source, and suggests that combining next-generation sequencing with functional metagenomics can be of use in overcoming the limitations of both approaches. IMPORTANCE The study shows the potential of functional metagenomics analyses to uncover the diversity of functions in microbial communities prevailing in dairy products and their processing environments, evidencing that lactic acid bacteria (LAB) dominate the cheese microbiota, whereas Gram-negative microorganisms of animal or soil origin dominate the microbiota of milk and cheese-processing environments. The functional and in silico screening of the library allowed the identification of LAB, and especially Lactococcus lactis, as a relevant reservoir of antimicrobial resistance (AR) determinants in cheese. Quorum-quenching (QQ) determinants were not recovered through the execution of wet-lab function-based screenings but were detected through in silico sequencing-based analyses. American Society for Microbiology 2020-02-18 /pmc/articles/PMC7029220/ /pubmed/32071160 http://dx.doi.org/10.1128/mSystems.00723-19 Text en Copyright © 2020 Alexa (Oniciuc) et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Alexa (Oniciuc), Elena A. Walsh, Calum J. Coughlan, Laura M. Awad, Amal Simon, Cezara A. Ruiz, Lorena Crispie, Fiona Cotter, Paul D. Alvarez-Ordóñez, Avelino Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title_full | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title_fullStr | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title_full_unstemmed | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title_short | Dairy Products and Dairy-Processing Environments as a Reservoir of Antibiotic Resistance and Quorum-Quenching Determinants as Revealed through Functional Metagenomics |
title_sort | dairy products and dairy-processing environments as a reservoir of antibiotic resistance and quorum-quenching determinants as revealed through functional metagenomics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029220/ https://www.ncbi.nlm.nih.gov/pubmed/32071160 http://dx.doi.org/10.1128/mSystems.00723-19 |
work_keys_str_mv | AT alexaoniciucelenaa dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT walshcalumj dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT coughlanlauram dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT awadamal dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT simoncezaraa dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT ruizlorena dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT crispiefiona dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT cotterpauld dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics AT alvarezordonezavelino dairyproductsanddairyprocessingenvironmentsasareservoirofantibioticresistanceandquorumquenchingdeterminantsasrevealedthroughfunctionalmetagenomics |