Cargando…

Phytochemical and comparative transcriptome analyses reveal different regulatory mechanisms in the terpenoid biosynthesis pathways between Matricaria recutita L. and Chamaemelum nobile L.

BACKGROUND: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites – especially the essential oils present in flowers are also different,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tai, Yuling, Hou, Xiaojuan, Liu, Chun, Sun, Jiameng, Guo, Chunxiao, Su, Ling, Jiang, Wei, Ling, Chengcheng, Wang, Chengxiang, Wang, Huanhuan, Pan, Guifang, Si, Xiongyuan, Yuan, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029581/
https://www.ncbi.nlm.nih.gov/pubmed/32070270
http://dx.doi.org/10.1186/s12864-020-6579-z
Descripción
Sumario:BACKGROUND: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites – especially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses. RESULTS: We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense. CONCLUSION: This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.