Cargando…
RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information
BACKGROUND: The interactions between non-coding RNAs (ncRNA) and proteins play an essential role in many biological processes. Several high-throughput experimental methods have been applied to detect ncRNA-protein interactions. However, these methods are time-consuming and expensive. Accurate and ef...
Autores principales: | Yi, Hai-Cheng, You, Zhu-Hong, Wang, Mei-Neng, Guo, Zhen-Hao, Wang, Yan-Bin, Zhou, Ji-Ren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029608/ https://www.ncbi.nlm.nih.gov/pubmed/32070279 http://dx.doi.org/10.1186/s12859-020-3406-0 |
Ejemplares similares
-
RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information
por: Suresh, V., et al.
Publicado: (2015) -
SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information
por: Ren, Zhong-Hao, et al.
Publicado: (2022) -
IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
por: Pan, Xiaoyong, et al.
Publicado: (2016) -
A multi-network integration approach for measuring disease similarity based on ncRNA regulation and heterogeneous information
por: Zhang, Ningyi, et al.
Publicado: (2022) -
EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA–protein interaction prediction
por: Wang, Jingjing, et al.
Publicado: (2021)