Cargando…
Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
Recent works have shown that the resting-state brain functional connectivity hypernetwork, where multiple nodes can be connected, are an effective technique for brain disease diagnosis and classification research. The lasso method was used to construct hypernetworks by solving sparse linear regressi...
Autores principales: | Li, Yao, Sun, Chao, Li, Pengzu, Zhao, Yunpeng, Mensah, Godfred Kim, Xu, Yong, Guo, Hao, Chen, Junjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029661/ https://www.ncbi.nlm.nih.gov/pubmed/32116508 http://dx.doi.org/10.3389/fnins.2020.00060 |
Ejemplares similares
-
Corrigendum: Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset
por: Li, Yao, et al.
Publicado: (2020) -
Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data
por: Li, Yao, et al.
Publicado: (2022) -
Hypernetwork Link Prediction Method Based on Fusion of Topology and Attribute Features
por: Ren, Yuyuan, et al.
Publicado: (2022) -
A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction
por: Cury, Claire, et al.
Publicado: (2020) -
Multiclass Sparse Bayesian Regression for fMRI-Based Prediction
por: Michel, Vincent, et al.
Publicado: (2011)