Cargando…
Extracting novel hypotheses and findings from RNA-seq data
Over the past decade, improvements in technology and methods have enabled rapid and relatively inexpensive generation of high-quality RNA-seq datasets. These datasets have been used to characterize gene expression for several yeast species and have provided systems-level insights for basic biology,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029681/ https://www.ncbi.nlm.nih.gov/pubmed/32009158 http://dx.doi.org/10.1093/femsyr/foaa007 |
Sumario: | Over the past decade, improvements in technology and methods have enabled rapid and relatively inexpensive generation of high-quality RNA-seq datasets. These datasets have been used to characterize gene expression for several yeast species and have provided systems-level insights for basic biology, biotechnology and medicine. Herein, we discuss new techniques that have emerged and existing techniques that enable analysts to extract information from multifactorial yeast RNA-seq datasets. Ultimately, this minireview seeks to inspire readers to query datasets, whether previously published or freshly obtained, with creative and diverse methods to discover and support novel hypotheses. |
---|