Cargando…

Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction

Ammonia (NH(3)) is a pivotal precursor in fertilizer production and a potential energy carrier. Currently, ammonia production worldwide relies on the traditional Haber–Bosch process, which consumes massive energy and has a large carbon footprint. Recently, electrochemical dinitrogen reduction to amm...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yiyin, Babu, Dickson D., Peng, Zhen, Wang, Yaobing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029727/
https://www.ncbi.nlm.nih.gov/pubmed/32099758
http://dx.doi.org/10.1002/advs.201902390
Descripción
Sumario:Ammonia (NH(3)) is a pivotal precursor in fertilizer production and a potential energy carrier. Currently, ammonia production worldwide relies on the traditional Haber–Bosch process, which consumes massive energy and has a large carbon footprint. Recently, electrochemical dinitrogen reduction to ammonia under ambient conditions has attracted considerable interest owing to its advantages of flexibility and environmental friendliness. However, the biggest challenge in dinitrogen electroreduction, i.e., the low efficiency and selectivity caused by poor specificity of electrocatalysts/electrolytic systems, still needs to be overcome. Although substantial progress has been made in recent years, acquiring most available electrocatalysts still relies on low efficiency trial‐and‐error methods. It is thus imperative to establish some critical guiding principles for nitrogen electroreduction toward a rational design and accelerated development of this field. Herein, a basic understanding of dinitrogen electroreduction processes and the inherent relationships between adsorbates and catalysts from fundamental theory are described, followed by an outline of the crucial principles for designing efficient electrocatalysts/electrocatalytic systems derived from a systematic evaluation of the latest significant achievements. Finally, the future research directions and prospects of this field are given, with a special emphasis on the opportunities available by following the guiding principles.