Cargando…
Sparse Convolutional Neural Networks for Genome-Wide Prediction
Genome-wide prediction (GWP) has become the state-of-the art method in artificial selection. Data sets often comprise number of genomic markers and individuals in ranges from a few thousands to millions. Hence, computational efficiency is important and various machine learning methods have successfu...
Autores principales: | Waldmann, Patrik, Pfeiffer, Christina, Mészáros, Gábor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029737/ https://www.ncbi.nlm.nih.gov/pubmed/32117441 http://dx.doi.org/10.3389/fgene.2020.00025 |
Ejemplares similares
-
Evaluation of the lasso and the elastic net in genome-wide association studies
por: Waldmann, Patrik, et al.
Publicado: (2013) -
Corrigendum: Evaluation of the lasso and the elastic net in genome-wide association studies
por: Waldmann, Patrik, et al.
Publicado: (2014) -
On the Use of the Pearson Correlation Coefficient for Model Evaluation in Genome-Wide Prediction
por: Waldmann, Patrik
Publicado: (2019) -
Phenotype Prediction and Genome-Wide Association Study Using Deep Convolutional Neural Network of Soybean
por: Liu, Yang, et al.
Publicado: (2019) -
Using Local Convolutional Neural Networks for Genomic Prediction
por: Pook, Torsten, et al.
Publicado: (2020)