Cargando…
Low-cost, open-access quantitative phase imaging of algal cells using the transport of intensity equation
Phase microscopy allows stain-free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quant...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029887/ https://www.ncbi.nlm.nih.gov/pubmed/32218984 http://dx.doi.org/10.1098/rsos.191921 |
Sumario: | Phase microscopy allows stain-free imaging of transparent biological samples. One technique, using the transport of intensity equation (TIE), can be performed without dedicated hardware by simply processing pairs of images taken at known spacings within the sample. The resulting TIE images are quantitative phase maps of unstained biological samples. Therefore, spatially resolved optical path length (OPL) information can also be determined. Using low-cost, open-source hardware, we applied the TIE to living algal cells to measure their effect on OPL. We obtained OPL values that were repeatable within species and differed by distinct amounts depending on the species being measured. We suggest TIE imaging as a method of discrimination between different algal species and, potentially, non-biological materials, based on refractive index/OPL. Potential applications in biogeochemical modelling and climate sciences are suggested. |
---|