Cargando…

3′,4′-Dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones as potential anti-cancer agents: synthesis and preliminary screening

Both tetrahydroisoquinolines (THIQs) and oxindoles (OXs) display a broad range of biological activities including anti-cancer activity, and are therefore recognized as two privileged scaffolds in drug discovery. In the present study, 24 3′,4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones, desi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lobe, Maloba M. M., Efange, Simon M. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029914/
https://www.ncbi.nlm.nih.gov/pubmed/32218955
http://dx.doi.org/10.1098/rsos.191316
Descripción
Sumario:Both tetrahydroisoquinolines (THIQs) and oxindoles (OXs) display a broad range of biological activities including anti-cancer activity, and are therefore recognized as two privileged scaffolds in drug discovery. In the present study, 24 3′,4′-dihydro-2′H-spiro[indoline-3,1′-isoquinolin]-2-ones, designed as molecular hybrids of THIQ and OX, were synthesized and screened in vitro against 59 cell lines in the NCI-60 screen. Twenty compounds displayed weak to moderate inhibition of cell proliferation; among them, three compounds displayed at least 50% inhibition of cell proliferation. The compounds appeared to target primarily renal cell cancer lines; however, leukaemia, melanoma, non-small cell lung cancer, prostate, ovarian and even breast cancer cell lines were also affected. Therefore, this class of spirooxindoles may provide useful leads in the search for new anti-cancer agents.