Cargando…

Beyond the darkness: recent lessons from etiolation and de-etiolation studies

The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-eti...

Descripción completa

Detalles Bibliográficos
Autores principales: Armarego-Marriott, Tegan, Sandoval-Ibañez, Omar, Kowalewska, Łucja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031072/
https://www.ncbi.nlm.nih.gov/pubmed/31854450
http://dx.doi.org/10.1093/jxb/erz496
Descripción
Sumario:The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light—the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2–3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term ‘etiolation’, and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.