Cargando…

In vivo assessment of mitochondrial capacity using NIRS in locomotor muscles of young and elderly males with similar physical activity levels

Mitochondrial capacity is pivotal to skeletal muscle function and is suggested to decline with age. However, there is large heterogeneity in current data, possibly due to effect modifiers such as physical activity, sex and muscle group. Yet, few studies have compared multiple muscle groups in differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Lagerwaard, Bart, Nieuwenhuizen, Arie G., de Boer, Vincent C. J., Keijer, Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031190/
https://www.ncbi.nlm.nih.gov/pubmed/31858399
http://dx.doi.org/10.1007/s11357-019-00145-4
Descripción
Sumario:Mitochondrial capacity is pivotal to skeletal muscle function and is suggested to decline with age. However, there is large heterogeneity in current data, possibly due to effect modifiers such as physical activity, sex and muscle group. Yet, few studies have compared multiple muscle groups in different age groups with comparable physical activity levels. Here, we newly used near-infrared spectroscopy (NIRS) to characterise mitochondrial capacity in three different locomotor muscles in young (19–25 year) and older (65–71 year), healthy males with similar physical activity levels. Mitochondrial capacity and reperfusion after arterial occlusion was measured in the vastus lateralis (VL), the gastrocnemius (GA) and the tibialis anterior (TA). Physical activity was verified using accelerometry and was not different between the age groups (404.3 ± 214.9 vs 494.9 ± 187.0 activity kcal per day, p = 0.16). Mitochondrial capacity was significantly lower in older males in the GA and VL, but not in the TA (p = 0.048, p = 0.036 and p = 0.64, respectively). Reperfusion rate was not significantly different for the GA (p = 0.55), but was significantly faster in the TA and VL in the young group compared to the older group (p = 0.0094 and p = 0.039, respectively). In conclusion, we identified distinct modes of mitochondrial ageing in different locomotor muscles in a young and older population with similar physical activity patterns. Furthermore, we show that NIRS is suitable for relatively easy application in ageing research and can reveal novel insights into mitochondrial functioning with age.