Cargando…
Challenges and Opportunities with Causal Discovery Algorithms: Application to Alzheimer’s Pathophysiology
Causal Structure Discovery (CSD) is the problem of identifying causal relationships from large quantities of data through computational methods. With the limited ability of traditional association-based computational methods to discover causal relationships, CSD methodologies are gaining popularity....
Autores principales: | Shen, Xinpeng, Ma, Sisi, Vemuri, Prashanthi, Simon, Gyorgy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031278/ https://www.ncbi.nlm.nih.gov/pubmed/32076020 http://dx.doi.org/10.1038/s41598-020-59669-x |
Ejemplares similares
-
A novel method for causal structure discovery from EHR data and its application to type-2 diabetes mellitus
por: Shen, Xinpeng, et al.
Publicado: (2021) -
Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities
por: Shen, Xinpeng, et al.
Publicado: (2022) -
“Exceptional brain aging” without Alzheimer’s disease: triggers, accelerators, and the net sum game
por: Vemuri, Prashanthi
Publicado: (2018) -
Role of structural MRI in Alzheimer's disease
por: Vemuri, Prashanthi, et al.
Publicado: (2010) -
Mental health progress requires causal diagnostic nosology and scalable causal discovery
por: Saxe, Glenn N., et al.
Publicado: (2022)